Our present study examines, in mesenteric resistance arteries, possible vasodilation alterations, and the role of NO and COX (cyclo-oxygenase) derivatives, in cirrhosis. The vasodilator response to acetylcholine was analysed in segments from control and cirrhotic rats. The effects of the non-specific COX inhibitor indomethacin, the specific COX-1 inhibitor SC-560 and the specific COX-2 inhibitor NS-398 were analysed in segments from both groups of rats. NO release was measured, and eNOS [endothelial NOS (NO synthase)], phospho-eNOS, iNOS (inducible NOS), COX-1 and COX-2 protein expression was also analysed. The effects of the TP receptor [TXA2 (thromboxane A(2)) receptor] antagonist SQ 29548, the TXA(2) synthesis inhibitor furegrelate, the PGI(2) (prostaglandin I(2)) synthesis inhibitor TCP (tranylcypromine) or TCP+furegrelate were only determined in segments from cirrhotic rats. The vasodilator response to acetylcholine was higher in segments from cirrhotic rats. Indomethacin, SC-560 and NS-398 did not modify the vasodilator response in control rats; however, indomethacin, NS-398 and TCP+furegrelate increased, whereas SC-560 did not modify and SQ 29548, furegrelate or TCP decreased, the vasodilator response to acetylcholine in cirrhotic rats. NO release was higher in cirrhotic rats. Furegrelate decreased, whereas TCP+furegrelate increased, the NO release in segments from cirrhotic rats. eNOS and COX-1 protein expression was not modified, whereas phosho-eNOS, iNOS and COX-2 protein expression was higher in cirrhotic rats. Therefore the increase in iNOS expression and eNOS activity may mediate increases in endothelial NO release. The COX-2 derivatives TXA(2) and PGI(2) may act simultaneously, producing a compensatory effect that reduces NO release and may limit the hyperdynamic circulation.
Aerobic exercise training decreases contractile response to EFS in mesenteric artery from SHRs. This effect is the net result of decreased noradrenaline release, increased sensitivity to the vasoconstrictive effects of noradrenaline and increased neuronal nitric oxide release and bioavailability. These modifications might contribute to the beneficial effects of aerobic exercise training on blood pressure.
Our study determines alterations in the vasoconstrictor response elicited by electric field stimulation (EFS) in mesenteric arteries from cirrhotic rats treated with CCl 4 , and how calcitonin gene-related peptide (CGRP) participates in this response. Vasoconstriction induced by EFS was analysed in the absence and presence of the CGRP receptor antagonist CGRP(8-37) in arterial segments from control and cirrhotic rats. The vasodilator response to exogenous CGRP was tested in both groups of rats, and the interference of the guanylate cyclase inhibitor ODQ or the K ATP channel blocker glibenclamide was analysed only in segments from cirrhotic rats. The vasodilator response to the K ATP channel opener pinacidil and to 8-bromo-cyclic GMP was tested. The K ATP currents were recorded using the patch-clamp technique. Expression of receptor activity-modifying protein 1 (RAMP1), calcitonin receptor-like receptor, Kir 6.1 and sulfonylurea receptor 2B (SUR2B) was also analysed. Release of CGRP and cGMP was measured. The EFS-elicited vasoconstriction was less in segments from cirrhotic rats. The presence of CGRP(8-37) increased the EFS-induced response only in segments from cirrhotic rats. The CGRP-induced vasodilatation was greater in segments from cirrhotic rats, and was inhibited by ODQ or glibenclamide. Both pinacidil and 8-bromo-cyclic GMP induced a stronger vasodilator response in segments from cirrhotic rats. Pinacidil induced greater K ATP currents in cirrhotic myocytes. Expression of RAMP1, calcitonin receptor-like receptor, Kir 6.1 and SUR2B was not modified by liver cirrhosis. Liver cirrhosis increased CGRP release, but did not modify cGMP formation. The decreased vasoconstrictor response to EFS in cirrhosis is mediated by increased vasodilator response to CGRP, as well as increased K ATP channel gating. This effect of CGRP may play a role in the splanchnic vasodilatation present in liver cirrhosis.
In the present study, we analysed possible alterations in adrenergic, nitrergic and sensory functioning in mesenteric arteries from rats at 1 and 21 months after partial portal vein ligation, and the mechanisms involved in these alterations, if any. For this purpose, we analysed the vasoconstrictor response to EFS (electrical field stimulation) and the effect of the α-antagonist phentolamine, the NOS (nitric oxide synthase) inhibitor L-NAME (N(G)-nitro-L-arginine methyl ester) and the CGRP (calcitonin gene-related peptide) receptor antagonist CGRP-(8-37) in mesenteric segments from ST (short-term; 1 month) and LT (long-term; 21 months) SO (sham-operated) and pre-hepatic PH (portal hypertensive) rats. The vasomotor responses to NA (noradrenaline), the NO donor DEA-NO (diethylamine NONOate) and CGRP were analysed. NA, NO and CGRP releases were measured. Phospho-nNOS (neuronal NOS) expression was studied. The vasoconstrictor response to EFS was decreased in STPH animals. Phentolamine decreased this vasoconstrictor response more strongly in SO animals. Both L-NAME and CGRP-(8-37) increased vasoconstrictor response to EFS more strongly in PH than SO segments. PH did not modify vasomotor responses to NA, DEA-NO or CGRP, but it decreased NA release while increasing those of NO and CGRP. Phospho-nNOS expression was increased by PH. In LTPH, no differences were observed in vasoconstrictor response to EFS, vasomotor responses or neurotransmitter release when compared with age-matched SO animals. In conclusion, the mesenteric innervation may participate in the development of the characteristic hyperdynamic circulation observed in STPH through the joint action of decreased adrenergic influence, and increased nitrergic and sensory innervations influences. The participation of each innervation normalizes under conditions of LTPH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.