Abstract. Landsat data used for monitoring activities to land cover because it has spatial resolution and high temporal. To monitor land cover changes in an area, atmospheric correction is needed to be performed in order to obtain data with precise digital value picturing current condition. This study compared atmospheric correction methods namely Quick Atmospheric Correction (QUAC), Dark Object Subtraction (DOS) and Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH). The correction results then were compared to Surface Reflectance (SR) imagery data obtained from the United States Geological Survey (USGS) satelite. The three atmospheric correction methods were applied to Landsat OLI data path/row126/62 for 3 particular dates. Then, sample on vegetation, soil and bodies of water (waterbody) were retrieved from the image. Atmospheric correction results were visually observed and compared with SR sample on the absolute value, object spectral patterns, as well as location and time consistency. Visual observation indicates that there was a contrast change on images that had been corrected by using FLAASH method compared to SR, which mean that the atmospheric correction method was quite effective. Analysis on the object spectral pattern, soil, vegetation and waterbody of images corrected by using FLAASH method showed that it was not good enough eventhough the reflectant value differed greatly to SR image. This might be caused by certain variables of aerosol and atmospheric models used in Indonesia. QUAC and DOS made more appropriate spectral pattern of vegetation and water body than spectral library. In terms of average value and deviation difference, spectral patterns of soil corrected by using DOS was more compatible than QUAC.
In this study, we proposed an automatic water extraction index (AWEI) threshold improvement model that can be used to detect lake surface water based on optical remote sensing data. An annual Landsat 8 mosaic was created using the Google Earth Engine (GEE) platform to obtain cloud-free satellite image data. The challenge of this study was to determine the threshold value, which is essential to show the boundary between water and nonwater. The AWEI was selected for the study to address this challenge. The AWEI approach was developed by adding a threshold water value based on the split-based approach (SBA) calculation analysis for Landsat 8 satellite images. The SBA was used to determine local threshold variations in data scenes that were used to classify water and nonwater. The class threshold between water and nonwater in each selected subscene image can be determined based on the calculation of class intervals generated by geostatistical analysis, initially referred to as smart quantiles. It was used to determine the class separation between water and nonwater in the resulting subscene images. The objectives of this study were (a) to increase the accuracy of automatic lake surface water detection by improvising the determination of threshold values based on analysis and calculations using the SBA and (b) to conduct a test case study of AWEI threshold improvement on several lakes’ surface water, which has a variety of different or heterogeneous characteristics. The results show that the threshold value obtained based on the smart quantile calculation from the natural break approach (AWEI ≥ −0.23) gave an overall accuracy of close to 100%. Those results were better than the normal threshold (AWEI ≥ 0.00), with an overall accuracy of 98%. It shows that there has been an increase of 2% in the accuracy based on the confusion matrix calculation. In addition to that, the results obtained when classifying water and nonwater classes for the different national priority lakes in Indonesia vary in overall accuracy from 94% to 100%.
Berdasarkan data Pendapatan Nasional Indonesia 2017, sektor pertambangan dan penggalian mempunyai peran penting bagi Indonesia. Sektor ini menyumbangkan 7,57% pada produk domestik bruto Indonesia di tahun 2017 . Salah satu sektor pertambangan yang potensial di Indonesia adalah pertambangan mineral Timah di Pulau Bangka dan Belitung. Namun kegiatan pertambangan ini banyak menimbulkan dampak negatif dari sisi lingkungan. Salah satu upaya awal untuk menanggulangi dampak negatif terhadap lingkungan adalah melakukan identifikasi kawasan pertambangan timah secara spasial. Teknologi yang dapat membantu untuk hal ini salah satunya adalah teknologi penginderaan jauh radar. Penelitian ini menggunakan data satelit radar sentinel-1 yang diluncurkan oleh European Space Agency (ESA). Tujuan penelitian ini adalah pemanfaatan data radar Sentinel-1 untuk identifikasi kawasan pertambangan menggunakan metode Object-Base Image Analysis (OBIA). Data sentinel-1 disegmentasi menggunakan algorithma multiresolution segmentation kemudian di klasifikasi menggunakan algorithma nearest neighbor. Masukan data yang digunakan untuk proses klasifikasi dibuat menjadi dua variasi, yang pertama adalah data standar deviasi, mean, dan brightness pada masing – masing segmen di tiap band, kemudian variasi kedua adalah penambahan data tekstur berupa nilai grey level coocurance matrix (GLCM). Hasil klasifikasi menunjukan bahwa masukan data yang menggunakan data tekstur GLCM mempunyai akurasi lebih tinggi dibandingkan dengan yang tanpa data tekstur GLCM. Secara statisktik Hasil klasifikasi dengan type satu menunjukan bahwa total akurasi nya adalah sebesar 89,0 %, dengan nilai kappa sebesar 0,48 sedangkan untuk type dua menunjukan bahwa total akurasinya adalah 89,3%, dengan kappa sebesar 0,50. Hasil klasifikasi kawasan pertambangan dapat digunakan sebagai masukan awal dalam rangka identifikasi spasial kerusakan lingkungan akibat aktivitas pertambangan.
Saat ini data penginderaan jauh sudah mengalami perkembangan yang pesat, baik dalam aspek sensor, wahana, maupun spesifikasi resolusinya. Data penginderaan jauh dapat digunakan untuk mengidentifikasi sumber daya alam dan lingkungan. Penelitian ini bertujuan untuk mengidentifikasi perubahan kondisi Danau Limboto yang Terdeteksi dengan Teknologi Penginderaan Jauh. Sumber daya perairan danau ini berupa kualitas air, luas permukaan, dan vegetasi air. Data yang digunakan adalah Landsat. Data tersebut digunakan untuk mengetahui perubahan danau secara visual serta perhitungan kualitas air, luas permukaan, dan vegetasi air (hidrofit)nya. Pada penelitian ini, kualitas air hanya difokuskan pada parameter TSS dan kecerahan. Kedua parameter ini bisa diekstraksi dengan metode e-SMART. Metode ini menggunakan band inframerah dekat pada citra Landsat. Hasil yang diperoleh adalah informasi spasial kualitas air, luas permukaan danau, dan vegetasi air di danau Limboto. Hasil ekstraksi kualitas air ini dilakukan uji dengan data lapangan. Uji akurasi menggunakan metode geostatistik non parameter (uji Fischer). Hasil uji akurasi yang diperoleh adalah95 % pada tingkat kepercayaan 1,96 σ. Uji akurasi dilakukan dengan membanding hasil pengukuran di citra dengan data lapangan. Hasil penelitian ini diharapkan bisa digunakan juga untuk membantu kegiatan nasional serupa, yaitu pemantauan 15 danau prioritas di Indonesia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.