Azobenzenes are ubiquitous motifs very important in many areas of science. Azo compounds display crucial properties for important applications, mainly for the chemical industry. Because of their discovery, the main application of aromatic azo compounds has been their use as dyes. These compounds are excellent candidates to function as molecular switches because of their efficient cis-trans isomerization in the presence of appropriate radiation. The classical methods for the synthesis of azo compounds are the azo coupling reaction (coupling of diazonium salts with activated aromatic compounds), the Mills reaction (reaction between aromatic nitroso derivatives and anilines) and the Wallach reaction (transformation of azoxybenzenes into 4-hydroxy substituted azoderivatives in acid media). More recently, other preparative methods have been reported. This critical review covers the various synthetic methods reported on azo compounds with special emphasis on the more recent ones and their mechanistic aspects (170 references).
SummaryControl over molecular motion represents an important objective in modern chemistry. Aromatic azobenzenes are excellent candidates as molecular switches since they can exist in two forms, namely the cis (Z) and trans (E) isomers, which can interconvert both photochemically and thermally. This transformation induces a molecular movement and a significant geometric change, therefore the azobenzene unit is an excellent candidate to build dynamic molecular devices. We describe selected examples of systems containing an azobenzene moiety and their motions and geometrical changes caused by external stimuli.
This review summarizes recent methodologies for the simultaneous formation of C–CF3 and C–C or C–heteroatom bonds by formal addition reactions to alkenes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.