RESULTSFrom a surgical standpoint there was a trizonal neural architecture including the proximal neurovascular plate (PNP), the predominant NVB (PNB) and ANPs. The PNP was a mean (range) of 5 (3-10) mm lateral to the seminal vesicles, was 3 (2-7) mm thick, 7 (5-25) mm wide and 9 (4-30) mm long. It was within 6 (4-15) mm of the bladder neck, 5 (2-7) mm of the endopelvic fascia and overlapped 5 (0-7) mm of the proximal prostate. The PNB varied in shape and size from the proximal to distal end, was thickest at the base and most variable near the apex. In eight of 12 cases, there was a medial extension behind the prostate, which converged medially at the apex in four cases. ANPs were noted within the layers of levator fascia and/or lateral pelvic fascia on the anterolateral aspect in five cases and in three on the posterior aspect of the prostate. In nine cadavers, the proximal third of the prostate was covered by the PNP where these ANPs were most prominent. The ANPs formed a plexus on the posterolateral aspect of the apex in four cases. CONCLUSIONWe have created an anatomical map of neurovascular tissue relevant to robotic prostatectomy. A tri-zonal neural architecture is described which has helped in standardizing the steps of robotic prostatectomy. KEYWORDSrobotic prostatectomy, nerve sparing technique, tri-zonal neural architecture, anatomy OBJECTIVETo review the neural architecture around the prostate gland, as it is relevant for nervesparing robotic prostatectomy, including in particular the anatomy of the proximal neurovascular tissue, the neurovascular bundle (NVB), and accessory neural pathways (ANPs).
An anatomical basis was sought for the postulated roles of nitric oxide (NO) as a labile transcellular messenger in the dorsal vagal complex (NTS-X). The diaphorase activity of NO synthase was used as a marker of neurons in NTS-X that are presumed to convert L-arginine to L-citrulline and NO. Nicotinamide adenine dinucleotide phosphate diaphorase (NADPHd) staining patterns in the nucleus tractus solitarii (NTS) were spatially related to terminal sites of primary visceral afferents from 1) orosensory receptors (e.g., rostral-central nucleus); 2) soft palate, pharynx, larynx, and tracheobronchial tree (e.g., dorsal, intermediate, and interstitial nuclei); 3) esophagus (nucleus centralis); 4) stomach (nucleus gelatinosus); 5) hepatic and coeliac nerves (nucleus subpostrema); and 6) carotid body and baroreceptors (medial commissural and dorsal-lateral nuclei). Primary visceral afferents were identified as sources of NADPHd-stained fiber plexuses in the NTS-X based on three findings: 1) the presence of NADPHd in nodose ganglion cells with morphological features of first-order sensory relay neurons; 2) retrograde transport of Fluoro-Gold (FG) or cholera toxin B (CT-B) from NTS-X to NADPHd-positive nodose ganglion neurons; and 3) striking reductions of NADPHd-stained processes within primary vagal projection fields ipsilateral to unilateral nodose ganglionectomy. A central origin of NADPHd-stained processes in NTS-X was identified in the medial parvicellular subdivision of the paraventricular hypothalamic nucleus. We conclude that NO of peripheral and central origin may modulate viscerosensory signal processing in the NTS-X and autonomic reflex function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.