The poor prognosis of pancreatic ductal adenocarcinoma (PDAC) is attributed to the highly fibrotic stroma and complex multi-cellular microenvironment that is difficult to fully recapitulate in pre-clinical models. To fast-track translation of therapies and to inform personalised medicine, we aimed to develop a whole-tissue ex vivo explant model that maintains viability, 3D multicellular architecture, and microenvironmental cues of human pancreatic tumours. Patient-derived surgically-resected PDAC tissue was cut into 1–2 mm explants and cultured on gelatin sponges for 12 days. Immunohistochemistry revealed that human PDAC explants were viable for 12 days and maintained their original tumour, stromal and extracellular matrix architecture. As proof-of-principle, human PDAC explants were treated with Abraxane and we observed different levels of response between patients. PDAC explants were also transfected with polymeric nanoparticles + Cy5-siRNA and we observed abundant cytoplasmic distribution of Cy5-siRNA throughout the PDAC explants. Overall, our novel model retains the 3D architecture of human PDAC and has advantages over standard organoids: presence of functional multi-cellular stroma and fibrosis, and no tissue manipulation, digestion, or artificial propagation of organoids. This provides unprecedented opportunity to study PDAC biology including tumour-stromal interactions and rapidly assess therapeutic response to drive personalised treatment.
Cancer-Associated Fibroblasts (CAF) are major contributors to pancreatic ductal adenocarcinoma (PDAC) progression through pro-tumor signalling and the generation of fibrosis, the latter of which creates a physical barrier to drugs. CAF inhibition is thus an ideal component of any therapeutic approach for PDAC. SLC7A11 is a cystine transporter that has been identified as a potential therapeutic target in PDAC cells. However, no prior study has evaluated the role of SLC7A11 in PDAC tumor stroma and its prognostic significance. Here we show that high expression of SLC7A11 in human PDAC tumor stroma, but not tumor cells, is independently prognostic of poorer overall survival. Orthogonal approaches showed that PDACderived CAFs are highly dependent on SLC7A11 for cystine uptake and glutathione synthesis and that SLC7A11 inhibition significantly decreases CAF proliferation, reduces their resistance to oxidative stress, and inhibits their ability to remodel collagen and support PDAC cell growth.Importantly, specific ablation of SLC7A11 from the tumor compartment of transgenic mouse PDAC tumors did not affect tumor growth, suggesting the stroma can substantially influence PDAC tumor response to SLC7A11 inhibition. In a mouse orthotopic PDAC model utilizing human PDAC cells and CAFs, stable knockdown of SLC7A11 was required in both cell types to reduce tumor growth, metastatic spread, and intratumoral fibrosis, demonstrating the importance of targeting SLC7A11 in both compartments. Finally, treatment with a nanoparticle genesilencing drug against SLC7A11, developed by our laboratory, reduced PDAC tumor growth, incidence of metastases, CAF activation, and fibrosis in orthotopic PDAC tumors. Overall, these findings identify an important role of SLC7A11 in PDAC-derived CAFs in supporting tumor growth. Statement of Significance:This study demonstrates that SLC7A11 in PDAC stromal cells is important for the tumor-promoting activity of CAF and validates a clinically translatable nanomedicine for therapeutic SLC7A11 inhibition in PDAC.
Cancer-Associated Fibroblasts (CAFs) are major contributors to pancreatic ductal adenocarcinoma (PDAC) progression, through pro-tumour cross-talk and the generation of fibrosis (physical barrier to drugs). CAF inhibition is thus an ideal component of any therapeutic approach for PDAC. SLC7A11 is a cystine transporter that has been identified as a potential therapeutic target in PDAC cells. However, no prior study has evaluated the role of SLC7A11 in PDAC tumour stroma and its prognostic significance. Herein we show that high expression of SLC7A11 in PDAC tumour stroma (but not tumour cells) is independently prognostic of poorer overall survival. We demonstrate using orthogonal approaches that PDAC-derived CAFs are highly dependent on SLC7A11 for cystine uptake and glutathione synthesis, and that SLC7A11 inhibition significantly decreases their proliferation, reduces their resistance to oxidative stress and inhibits their ability to remodel collagen and support PDAC cell growth. Importantly, our paradigm-shifting work demonstrates the need to inhibit SLC7A11 in the PDAC stroma, as genetic ablation of SLC7A11 in PDAC cells alone is not enough to reduce tumour growth. Finally, our work validates that a nano-based gene-silencing drug against SLC7A11, developed by our group, reduces PDAC tumour growth, CAF activation and fibrosis in a mouse model of PDAC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.