The ankyrin repeat and kinase domain containing 1 (ANKK1) TaqIA polymorphism has been extensively studied as a marker of the gene for dopamine receptor D2 (DRD2) in addictions and other dopamine-associated traits. In vitro mRNA and protein studies have shown a potential connection between ANKK1 and the dopaminergic system functioning. Here, we have investigated whether Ankk1 expression in the brain is regulated by treatment with dopaminergic agonists. We used quantitative RT-PCR of total brain and Western blots of specific brain areas to study Ankk1 in murine brain after dopaminergic treatments. We found that Ankk1 mRNA was upregulated after activation of D1R-like dopamine receptors with SKF38393 (2.660 ± 1.035-fold; t: 4.066, df: 11, P = 0.002) and apomorphine (2.043 ± 0.595-fold; t: 3.782, df: 8, P = 0.005). The D2R-like agonist quinelorane has no effect upon Ankk1 mRNA (1.004 ± 0.580-fold; t: 0.015, df: 10, P = 0.9885). In contrast, mice treatment with the D2R-like agonists 7-OH-DPAT and aripiprazole caused a significant Ankk1 mRNA downregulation (0.606 ± 0.057-fold; t: 2.786, df: 10, P = 0.02 and 0.588 ± 0.130-fold; t: 2.394, df: 11, P = 0.036, respectively). With respect the Ankk1 proteins profile, no effects were found after SKF38393 (t: 0.54, df: 2, P = 0.643) and Quinelorane (t: 0.286, df: 8, P = 0.782) treatments. In contrast, the D2R-like agonist 7-OH-DPAT (±) caused a significant increment of Ankk1 in the striatum (t: 2.718, df: 7; P = 0.03) when compared to the prefrontal cortex. The activation of D1R-like and D2-R-like leads to opposite transcriptional regulation of Ankk1 by specific pathways.
Ankyrin repeat and kinase domain containing 1 (ANKK1) gene has been widely related to neuropsychiatry disorders. The localization of ANKK1 in neural progenitors and its correlation with the cell cycle has suggested its participation in development. However, ANKK1 functions still need to be identified. Here, we have further characterized the ANKK1 localization in vivo and in vitro, by using immunolabeling, quantitative real-time PCR and Western blot in the myogenic lineage. Histologic investigations in mice and humans revealed that ANKK1 is expressed in precursors of embryonic and adult muscles. In mice embryos, ANKK1 was found in migrating myotubes where it shows a polarized cytoplasmic distribution, while proliferative myoblasts and satellite cells show different isoforms in their nuclei and cytoplasm. In vitro studies of ANKK1 protein isoforms along the myogenic progression showed the decline of nuclear ANKK1-kinase until its total exclusion in myotubes. In adult mice, ANKK1 was expressed exclusively in the Fast-Twitch muscles fibers subtype. The induction of glycolytic metabolism in C2C12 cells with high glucose concentration or treatment with berberine caused a significant increase in the ANKK1 mRNA. Similarly, C2C12 cells under hypoxic conditions caused the increase of nuclear ANKK1. These results altogether show a relationship between ANKK1 gene regulation and the metabolism of muscles during development and in adulthood. Finally, we found ANKK1 expression in regenerative fibers of muscles from dystrophic patients. Future studies in ANKK1 biology and the pathological response of muscles will reveal whether this protein is a novel muscle disease biomarker.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.