Solid-state NMR (ssNMR) is a versatile technique that can be used for the characterization of various materials, ranging from small molecules to biological samples, including membrane proteins. ssNMR can probe...
The near- and mid-IR spectra of α-alanine isolated in low-temperature Ar, Kr, and N2 matrixes were measured. Production of the short-lived conformer VI at the expense of the predominant conformer I was observed upon short irradiation with NIR laser light at the first O-H stretching overtone band of conformer I. Conformer VI decays by H-atom tunneling at 12 K with half-lives of 5.7 ± 1 s, 2.8 ± 1 s in Ar (two different sites), 7.0 ± 1 s in Kr, and 2.8 × 10(3) ± 1.2 × 10(3) s in N2. Upon prolonged irradiation, conformer I slowly transformed into conformer IIa. On the basis of these irradiation experiments, the unambiguous vibrational assignments of conformers I, IIa, and VI are given. In contrast to similar experiments for glycine, the irradiation experiments did not lead to the formation of conformer IIIb. This is explained by a very low IIIb → I barrier height computed for alanine, which results in a very fast depletion of conformer IIIb even in low-temperature matrixes.
The voltage-dependent anion channel (VDAC) is one of the most highly abundant proteins found in the outer mitochondrial membrane, and was one of the earliest discovered. Here we review progress in understanding VDAC function with a focus on its structure, discussing various models proposed for voltage gating as well as potential drug targets to modulate the channel’s function. In addition, we explore the sensitivity of VDAC structure to variations in the membrane environment, comparing DMPC-only, DMPC with cholesterol, and near-native lipid compositions, and use magic-angle spinning NMR spectroscopy to locate cholesterol on the outside of the β-barrel. We find that the VDAC protein structure remains unchanged in different membrane compositions, including conditions with cholesterol.
Cohesive FG domains assemble into a condensed phase forming the selective permeability barrier of nuclear pore complexes. Nanoscopic insight into fundamental cohesive interactions has long been hampered by the sequence heterogeneity of native FG domains. We overcome this challenge by utilizing an engineered perfectly repetitive sequence and a combination of solution and magic angle spinning NMR spectroscopy. We map the dynamics of cohesive interactions in both phase-separated and soluble states at atomic resolution using TROSY for rotational correlation time (TRACT) measurements. We find that FG repeats exhibit nanosecond-range rotational correlation times and remain disordered in both states, although FRAP measurements show slow translation of phase-separated FG domains. NOESY measurements enable the direct detection of contacts involved in cohesive interactions. Finally, increasing salt concentration and temperature enhance phase separation and decrease local mobility of FG repeats. This lower critical solution temperature (LCST) behaviour indicates that cohesive interactions are driven by entropy.
The conformers of α-serine were investigated by matrix-isolation IR spectroscopy combined with NIR laser irradiation. This method, aided by 2D correlation analysis, enabled unambiguously grouping the spectral lines to individual conformers. On the basis of comparison of at least nine experimentally observed vibrational transitions of each conformer with empirically scaled (SQM) and anharmonic (GVPT2) computed IR spectra, six conformers were identified. In addition, the presence of at least one more conformer in Ar matrix was proved, and a short-lived conformer with a half-life of (3.7 ± 0.5) × 10(3) s in N2 matrix was generated by NIR irradiation. The analysis of the NIR laser-induced conversions revealed that the excitation of the stretching overtone of both the side chain and the carboxylic OH groups can effectively promote conformational changes, but remarkably different paths were observed for the two kinds of excitations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.