Observational evidence that light-intensity PA can confer health benefits is accumulating. Currently inactive or insufficiently active people should be encouraged to engage in PA of any intensity. If longitudinal and intervention studies corroborate our findings, the revision of PA recommendations to include light-intensity activities, at least for currently inactive populations, might be warranted.
Measures aiming at containing the Coronavirus disease 2019 (COVID-19) include isolation, social distancing, and quarantine. Quarantine and other lockdown instruments show promise in reducing the number of COVID-19 infections and deaths. It is reasonable to assume that lockdown leads to reduced levels of physical activity in the general population. Potential detrimental health effects of lockdown, such as psychological distress and physical inactivity induced maladaptations must be addressed. The current review summarizes harmful effects of limited physical activity on mental and physical health due to social distancing and quarantine and highlights the effects of simple physical activity regimes counteracting these detrimental effects, with a special emphasis on acute effects.
There is mounting evidence that aerobic exercise has a positive effect on cognitive functions in older adults. To date, little is known about the neurometabolic and molecular mechanisms underlying this positive effect. The present study used magnetic resonance spectroscopy and quantitative MRI to systematically explore the effects of physical activity on human brain metabolism and grey matter (GM) volume in healthy aging. This is a randomised controlled assessor-blinded two-armed trial (n=53) to explore exercise-induced neuroprotective and metabolic effects on the brain in cognitively healthy older adults. Participants (age >65) were allocated to a 12-week individualised aerobic exercise programme intervention (n=29) or a 12-week waiting control group (n=24). The main outcomes were the change in cerebral metabolism and its association to brain-derived neurotrophic factor (BDNF) levels as well as changes in GM volume. We found that cerebral choline concentrations remained stable after 12 weeks of aerobic exercise in the intervention group, whereas they increased in the waiting control group. No effect of training was seen on cerebral N-acetyl-aspartate concentrations, nor on markers of neuronal energy reserve or BDNF levels. Further, we observed no change in cortical GM volume in response to aerobic exercise. The finding of stable choline concentrations in the intervention group over the 3 month period might indicate a neuroprotective effect of aerobic exercise. Choline might constitute a valid marker for an effect of aerobic exercise on cerebral metabolism in healthy aging.
Widespread persistent inactivity makes continued efforts in physical activity promotion a persistent challenge. The precise content of physical activity recommendations is not broadly known, and there are concerns that the general messaging of the guidelines, including the recommendations to perform at least 150 min of at least moderate intensity physical activity per week might seem unattainable for and even actually discourage currently inactive people. Here we show that there are a myriad of ways of being physically active, and provide (in part) out-of-the-box examples of evidence based, pragmatic, easily accessible physical activity regimes below 150 min and/or with lower than moderate intensity that yield meaningful health benefits for currently inactive people.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.