Previous studies have demonstrated that glycopeptide compounds carrying hydrophobic substituents can have favorable pharmacological (i.e. antibacterial and antiviral) properties. We here report on the in vitro anti-influenza virus activity of aglycoristocetin derivatives containing hydrophobic side chain-substituted cyclobutenedione. The lead compound 8e displayed an antivirally effective concentration of 0.4 microM, which was consistent amongst influenza A/H1N1, A/H3N2 and B viruses, and a selectivity index > or =50. Structural analogues derived from aglycovancomycin were found to be inactive. The hydrophobic side chain was shown to be an important determinant of activity. The narrow structure-activity relationship and broad activity against several human influenza viruses suggest a highly conserved interaction site, which is presumably related to the influenza virus entry process. Compound 8e proved to be inactive against several unrelated RNA and DNA viruses, except for varicella-zoster virus, against which a favorable activity was noted.
For several integrins, the existence of multiple conformational states has been studied intensively. For the integrin ␣21, a major collagen receptor on platelets and other cell types, however, no such experimental data were available thus far. Recently, our group has developed a monoclonal antibody IAC-1 sensitive to the molecular conformation of
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.