The critical situation of the European eel (Anguilla anguilla) has urged the development of sperm cryopreservation protocols for reproduction in captivity and cryobanking. In the last years, two research groups have developed their own protocols in Spain and Hungary with positive results, but difficult to compare. Here, a series of experiments were conducted to test the quality of thawed sperm after using both protocols, determining which of them produce the best results and aiming for standardization. The quality of thawed sperm was assessed by studying the motility and kinetic values of thawed sperm from both cryopreservation protocols using a computerassisted sperm analysis (CASA-Mot) system. In addition, a viability analysis was performed using flow cytometry to test if the cryoprotectants or the freezing-thawing process led to a reduction in spermatozoa survival. Furthermore, since during cryopreservation the sperm was treated with methylated cryoprotectants (DMSO or methanol) that may induce epigenetic changes in the sperm DNA (cytosine methylation) and could affect the offspring, we conducted a luminometric methylation assay (LUMA) to study the DNA methylation levels induced by both protocols. In this work, all the above-mentioned parameters were analyzed in fresh and frozen-thawed sperm samples. Our results showed that thawed sperm samples from both protocols presented lower sperm motility and velocity, and lower percentage of live cells than those shown in fresh sperm samples. Furthermore, sperm samples from the methanol based protocol showed significantly higher motility, velocity and percentage of live spermatozoa than the same sperm samples treated with the DMSO based protocol. In addition, the DMSO based protocol induced a hypomethylation of sperm DNA compared to fresh samples whereas the methanol based protocol did not alter sperm DNA methylation level. Our results indicate that the methanol based protocol is a more suitable protocol that preserves better the motility and genetic qualities of the European eel sperm.
The effect of seven heavy metals on the motility parameter of zebrafish sperm was tested in order to develop an in vitro toxicological test system as an alternative to live animal testing. In vitro test systems are currently preferred in ecotoxicology due to their practical and ethical advantages and fish sperm can be a suitable model. A number of studies had been carried out previously on this topic, but the described methods had not been standardized in numerous aspects (donor species, measured endpoint, etc.). In this study, heavy metals (mercury, arsenic, chromium, zinc, nickel, copper, cadmium) were used as reference toxicants with known toxicity to develop a standardized fish sperm in vitro assay. The tested concentrations were determined based on preliminary range finding tests. The endpoints were progressive motility (PMOT, %), curvilinear velocity (VCL, μm/s), and linearity (LIN, %) measured by a computer-assisted sperm analysis (CASA) system. According to our results, PMOT was the most sensitive of the three investigated parameters: dose-response curves were observed for each metal at relatively low concentrations. VCL values were less sensitive: higher concentrations were needed to observe changes. Of the three parameters, LIN was the least affected: dose-response relationship was observed only in the case of mercury (e.g., lowest observed effect concentration (LOEC) of Hg at 120 min: 1 mg/L for PMOT, 2.5 mg/L for VCL, 5 mg/L for LIN; LOEC of Cu at 120 min: 1 mg/L for PMOT, 5 mg/L for VCL, any for LIN). The order of toxicity as determined by PMOT was as follows: Hg > As > Cd > Cu > Zn > Cr > Ni. In conclusion, we found that PMOT of zebrafish sperm was an accurate and fast bioindicator of heavy metal load. Sperm analysis can be adopted to estimate the possible toxic effects of various chemicals in vitro. Future investigations should concentrate on the applicability of this assay to other contaminants (e.g., organic pollutants).
The effect of sodium and potassium concentrations as well as optimal pH on the motility of common carp Cyprinus carpio L. sperm during shortterm storage in artificial seminal plasma (ASP) was investigated. Sperm was collected from individual males (n = 5) and each sample diluted tenfold (1:9) in ASP (sperm:extender) containing 2 mM Sperm motility was measured using a CASA system during 72 h of storage. Immediately after dilution, sperm motility was high (90%) both in each variant and in the control group (fresh sperm). After 72-h storage, the highest sperm motility was noted in ASP containing 110 mM NaCl and 40 mM KCl. No differences were found in the motility of samples preserved within the pH range of 7.0-9.0. Our data suggest that for the short-term storage of common carp sperm, whereas the pH of the solution does not play a crucial role, a specific potassium concentration of around 40 mM is required.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.