This study proposed a statistical investigate the pattern of students’ academic performance before and after online learning due to the Movement Control Order (MCO) during pandemic outbreak and a modelling students’ academic performance based on classification in Support Vector Machine (SVM). Data sample were taken from undergraduate students of Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris (UPSI). Student’s Grade Point Average (GPA) were obtained to developed model of academic performances during Covid-19 outbreak. The prediction model was used to predict the academic performances of university students when online classes was conducted. The algorithm of Support Vector Machine (SVM) was used to develop a model of students’ academic performance in university. For the Support Vector Machine (SVM) algorithm, there are two important parameters which are C (misclassification tolerance parameter) and epsilon need to identify before proceed the further analysis. The parameters was applied to four different types of kernel which is linear kernel, radial basis function kernel, polynomial kernel and sigmoid kernel and the result was found that the best accuracy achieved by SVM are 73.68% by using linear kernel and the worst accuracy obtained from a sigmoid kernel which is 67.99% with parameter of misclassification tolerance C is 128 and epsilon is 0.6.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.