In ultrasound-based elastography methods, the estimation of shear wave velocity typically involves the tracking of speckle motion due to an applied force. The errors in the estimates of tissue displacement, and thus shear wave velocity, are generally attributed to electronic noise and decorrelation due to physical processes. We present our preliminary findings on another source of error, namely, speckle-induced bias in phase estimation. We find that methods that involve tracking in a single location, as opposed to multiple locations, are less sensitive to this source of error since the measurement is differential in nature and cancels out speckle-induced phase errors.
The application of Spatially Modulated Ultrasound Radiation Force (SMURF) to shear modulus imaging is demonstrated in tissue mimicking phantoms and porcine liver. Scanning and data acquisition was performed with a Siemens Antares ultrasound scanner and VF7-3 linear array operating at 4.21 MHz. Modulus estimates in uniform phantoms of Zerdine™ with shear moduli of 5.1 and 12.4 kPa exhibited standard deviations within 6% of the mean value. Zerdine spheres 1 cm in diameter (nominally 2.7, 4.7, and 15 kPa) in a 8 kPa (nominal) background are clearly resolved. Cross sectional images of a soft conical inclusion in a gelatin-based phantom indicate a spatial resolution of approximately 2.5 mm. Images of the shear modulus of an ex-vivo sample of porcine liver tissue show an average value of 3kPa. A stiff lesion induced with 0.5 mL of 10% glutaraldehyde is clearly visible as a region of shear modulus in excess of 10 kPa. A modulus gradient associated with the diffusion of the glutaraldehyde is visible. Two pulse sequences were examined, differing only in the timing of the beams used to generate the shear waves. Details of the beam sequences and subsequent signal processing are presented.
A validation study of the Spatially Modulated Ultrasound Radiation Force (SMURF) method for shear modulus estimation is presented. SMURF estimates of uniform gelatin and Zerdine™ phantoms covering a modulus range of 2 to 18 kPa are compared with results obtained by unconfined mechanical compression and sonoelastography. The results show agreement within the measurement uncertainties over the range indicated for all three methods. Repeatability and variation on the order of 5% of the phantom modulus are found for observations made at a single point within the phantom. Averaging of modulus estimates from several adjacent scan lines further decreases the variation. By using multiple radiation force peaks to induce a shear wave of known wavelength and measure the frequency of the wave, SMURF obtains modulus estimates from tracking data acquired along a single A-line. This is significant, as speckle can bias the measured phase of the shear wave. SMURF is shown to be insensitive to a constant phase error in the shear wave measurement. This results in greatly reduced correlated noise in the modulus estimates, in contrast with methods which track at multiple locations and do not cancel phase errors.
Single Tracking Location (STL) Shear wave Elasticity Imaging (SWEI) is a method for detecting elastic differences between tissues. It has the advantage of intrinsic speckle bias suppression compared to Multiple Tracking Location (MTL) variants of SWEI. However, the assumption of a linear model leads to an overestimation of the shear modulus in viscoelastic media. A new reconstruction technique denoted Single Tracking Location Viscosity Estimation (STL-VE) is introduced to correct for this overestimation. This technique utilizes the same raw data generated in STL-SWEI imaging. Here, the STL-VE technique is developed by way of a Maximum Likelihood Estimation (MLE) for general viscoelastic materials. The method is then implemented for the particular case of the Kelvin-Voigt Model. Using simulation data, the STL-VE technique is demonstrated and the performance of the estimator is characterized. Finally, the STL-VE method is used to estimate the viscoelastic parameters of ex-vivo bovine liver. We find good agreement between the STL-VE results and the simulation parameters as well as between the liver shear wave data and the modeled data fit.
A val i da tion study of the Spa tially Mod u lated Ul tra sound Ra di a tion Force (SMURF) method for shear modulus es ti ma tion is pre sented. SMURF es ti mates of uni form gel a tin and Zerdine™ phan toms cov er ing a modulus range of 2 to 18 kPa are com pared with re sults ob tained by un con fined me chan i cal com pres sion and sonoelastography. The re sults show agree ment within the mea sure ment un cer tain ties over the range in di cated for all three meth ods. Re peat abil ity and vari a tion on the or der of 5% of the phantom modulus are found for ob ser va tions made at a sin gle point within the phan tom. Av er ag ing of modulus es ti mates from sev eral ad ja cent scan lines fur ther de creases the vari a tion. By us ing mul ti ple radi a tion force peaks to in duce a shear wave of known wave length and mea sure the fre quency of the wave, SMURF ob tains modulus es ti mates from track ing data ac quired along a sin gle A-line. This is sig nif icant, as speckle can bias the mea sured phase of the shear wave. SMURF is shown to be in sen si tive to a con stant phase er ror in the shear wave mea sure ment. This re sults in greatly re duced cor re lated noise in the modulus es ti mates, in con trast with meth ods which track at mul ti ple lo ca tions and do not can cel phase er rors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.