High‐altitude forests are very important for local livelihood in the vulnerable environment of the densely populated tropical highlands. Humans need the ecosystem services of the forest and directly impact the forest through livestock herding, fire, and wood harvesting. Nevertheless, temperature‐sensitive tree lines in the tropics are scarcely investigated in comparison with higher northern latitudes. In this study, the Erica arborea L. tree line is studied in a tropical mountain in the North Ethiopian highlands: Lib Amba of the Abune Yosef Mountain range (12°04′N, 39°22′E, 3993 m asl). The present tree line and forest cover was recorded by high‐resolution satellite imagery from Google Maps and field data (2010–2013), while historical forest cover was studied from aerial photographs (1965–1982) and repeat photography (1917–2013). The aerial and satellite images were orthorectified and classified in forest/non‐forest binary maps. The binary forest layers were used to detect forest‐cover change and tree line dynamics by image differencing between the three time layers (1965–1982–2010). These maps and a terrestrial photograph indicate two periods of deforestation (1917–1965 and 1982–2013), whereas the forest cover was stable between 1965 and 1982. Deforestation was especially severe (with 63%) between 1982 and 2010, associated with a population increase from 77 to 153 inhabitants per square km. There is significant evidence that the elevation of the E. arborea L. tree line increased from 7 to 15 vertical meters between 1965 and 2010, in an area with decreasing anthropozoogenic pressure. Copyright © 2014 John Wiley & Sons, Ltd.
Land use and land cover (LULC) change through inappropriate agricultural practices and high human and livestock population pressure have led to severe land degradation in the Ethiopian highlands. This has led to further degradation such as biodiversity loss, deforestation, and soil erosion. The study examined woody vegetation diversity status and the impact of drivers of change across different LULC types and agroecological zones in Gilgel Tekeze catchment, northern Ethiopian highlands. LULC dynamics were assessed using GIS techniques on 1976, 1986, and 2008 satellite images. Vegetation data were collected from 135 sample plots (20 m × 20 m) from five LULC types, namely, forest, shrub-bush, grazing, settlement, and cultivated land, in the three agroecological zones; Kolla, Weyna-Dega, and Dega. Differences in vegetation structure and composition and their relationship to agroecological zones were tested using two-way ANOVA and PCA technique. The results show that vegetation structure and composition significantly differed across all LULC types in different agroecological zones particularly in sapling density, tree height, and shrub height and in each agroecological zone between forest land, shrub-bush land, and settlement area. Overall, Weyna-Dega agroecological zone and the shrub-bush land had more structural and compositional diversity than the other agroecological zones and LULC types.
In the Highlands of Northern Ethiopia soil and water conservation (SWC) practices, including construction of check dams in gullies, have been widely implemented for the last three decades. Despite this extensive installation of check dams, their effects on runoff response are not well understood as compared to those of other SWC practices. Hence, this study examines the effects of check dams on runoff response in gully channels. 90 degree V-notch weirs were installed to measure a wide range of runoff discharges at the upper and lower sections of five gully reaches: two channel cut in sandstone (a gully with check dams and vegetation (SCV) and an untreated gully (S)) and three cut in limestone (an untreated gully (L), a gully with check dams but no vegetation (LC) and a gully with check dams and vegetation (LCV)). Automatic sensors were installed to monitor runoff depth during two rainy seasons (29/08/14 -17/09/14 and 24/7/15 -14/09/15). All runoff characteristics at the lower section of each gully reaches were calculated for a gully reaches length of 50 m. In the sandstone area, the results show longer lag times of runoff to reach the lower section of the channel reach in the treated gully (SCV) compared to the untreated gully: difference in time lag equal lag to production of runoff equals 51% for runoff initiation, 61% for peak runoff and 44% for runoff end. An increase of hydraulic roughness by check dams and water transmission losses in deposited sediments are responsible for the delay of runoff to reach the lower part of the gully channels. In the limestone area, different time lags were recorded in different gully reaches regardless of the treatment effects (lag to runoff initiation, lag to peak flow and lag to runoff end were larger at LC, L and LCV, respectively). The reduction of peak runoff discharge between the upper and lower gully sections was larger in the gullies with check dam and vegetation (8% -17%) than in gullies without treatment (5% -6%). Reduction of runoff volume between these 2 gully sections was also larger in treated gullies than in untreated gullies: i.e. 18%, 9% and 8% in SCV, LCV and LC, respectively while it was only 4% in S and 6% in L. This study shows that the implementation of check dams combined with vegetation reduced peak flow discharge and runoff volume as large sections of runoff infiltrated in the sediments deposited behind the check dams. As gully check dams are implemented in a large areas of the North Ethiopia Highlands, this contributes to groundwater recharge and increased river baseflows.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.