SummaryThe control of phosphate-regulated genes in Streptomyces coelicolor is mediated by the two-component system PhoR-PhoP. When coupled to the reporter xylE gene the pstS , phoRP and phoU promoters were shown to be very sensitive to phosphate regulation. The transcription start points of the pstS , the phoRP and the phoU promoters were identified by primer extension. phoRP showed a leaderless transcript. The response-regulator (DNA-binding) PhoP protein was overexpressed and purified in Escherichia coli as a GST-PhoP fused protein. The DNA-binding domain (DBD) of PhoP was also obtained in a similar manner. Both PhoP and its truncated DBD domain were found to bind with high affinity to an upstream region of the pstS and phoRP-phoU promoters close to the ----35 sequence of each of these promoters. DNase I protection studies revealed a 29 bp protected stretch in the sense strand of the pstS promoter that includes two 11 bp direct repeat units. Footprinting of the bidirectional phoRP-phoU promoter region showed a 51 bp protected sequence that encompasses four direct repeat units, two of them with high similarity to the protected sequences in the pstS promoter. PHO boxes have been identified by alignment of the six direct repeat units found in those promoter regions.
The transport of inorganic phosphate (P i ) is essential for the growth of all organisms. The metabolism of soil-dwelling Streptomyces species, and their ability to produce antibiotics and other secondary metabolites, are strongly influenced by the availability of phosphate. The transcriptional regulation of the SCO4138 and SCO1845 genes of Streptomyces coelicolor was studied. These genes encode the two putative low-affinity P i transporters PitH1 and PitH2, respectively. Expression of these genes and that of the high-affinity transport system pstSCAB follows a sequential pattern in response to phosphate deprivation, as shown by coupling their promoters to a luciferase reporter gene. Expression of pitH2, but not that of pap-pitH1 (a bicistronic transcript), is dependent upon the response regulator PhoP. PhoP binds to specific sequences consisting of direct repeats of 11 nt in the promoter of pitH2, but does not bind to the pap-pitH1 promoter, which lacks these direct repeats for PhoP recognition. The transcription start point of the pitH2 promoter was identified by primer extension analyses, and the structure of the regulatory sequences in the PhoP-protected DNA region was established. It consists of four central direct repeats flanked by two other less conserved repeats. A model for PhoP regulation of this promoter is proposed based on the four promoter DNA-PhoP complexes detected by electrophoretic mobility shift assays and footprinting studies.
Phosphate control of the biosynthesis of secondary metabolites in Streptomyces is mediated by the two component system PhoR-PhoP. Linked to the phoR-phoP cluster, and expressed in the opposite orientation, is a phoU-like encoding gene with low identity to the phoU gene of Escherichia coli. Expression of this phoU-like gene is strictly dependent on PhoP activation. We have isolated a PhoU-null mutant and used transcriptomic and RNA-sequencing (RNA-seq) procedures to identify its transcription start site and regulation. RNA-seq studies identified two transcription start sites, one upstream of phoU and the second upstream of the mptA gene. Whereas transcription of PhoU is entirely dependent on PhoP, expression of the downstream mtpA gene is only partially dependent on PhoP activation. The phoU mutant grows more slowly than the parental strain, sporulates poorly and the spores lack pigmentation. Production of actinorhodin and undecylprodigiosin decreased in the phoU mutant, indicating that PhoU has a positive modulating effect on production of these antibiotics. Indeed, transcriptional studies of expression of the actII-ORF4 and redD genes indicated that the PhoU protein activates expression of these antibiotic regulators. Using the glpQ1 promoter as in vivo reporter of the activity of the PHO regulon genes, we observed that expression of glpQ1 is negatively modulated by PhoU. These results were confirmed by reverse transcription-PCR studies of three genes of the PHO regulon; that is, glpQ1, pstS and phoR. In conclusion, PhoU acts as a negative modulator of expression of the PHO regulon genes and as phoU expression is strictly dependent on PhoP activation, this mechanism appears to work as a feed-back control mechanism (self-regulation).The Journal of Antibiotics advance online publication, 1 November 2017; doi:10.1038/ja.2017.130.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.