Obesity has been associated with COVID-19 and with pneumonia and acute respiratory distress syndrome but is also associated with comorbidities that place patients at higher risk. This study examines whether obesity is associated with intubation or death—as well as biomarkers of inflammation, cardiac injury, or fibrinolysis—in the context of COVID-19 disease independent of obesity-related comorbidities.
Weight is defended so that increases or decreases in body mass elicit responses that favor restoration of one's previous weight. While much is known about the signals that respond to weight loss and the central role that leptin plays, the lack of experimental systems studying the overfed state has meant little is known about pathways defending against weight gain. We developed a system to study this physiology and found that overfed mice defend against increased weight gain with graded anorexia but, unlike weight loss, this response is independent of circulating leptin concentration. In overfed mice that are unresponsive to orexigenic stimuli, adipose tissue is transcriptionally and immunologically distinct from fat of ad libitum-fed obese animals. These findings provide evidence that overfeeding-induced obesity alters adipose tissue and central responses in ways that are distinct from ad libitum obesity and activates a non-leptin system to defend against weight gain.
BACKGROUND: Obesity is associated with an increased risk of primary graft dysfunction (PGD) after lung transplantation. The contribution of specific adipose tissue depots is unknown. METHODS: We performed a prospective cohort study of adult lung transplant recipients at 4 U.S. transplant centers. We measured cross-sectional areas of subcutaneous adipose tissue (SAT) and visceral
The purpose of this study was to characterize methylmercury (MeHg)-induced dopamine (DA) release from undifferentiated pheochromocytoma (PC12) cells and to examine the potential role for DA synthesis in this process. MeHg caused a significant increase in DA release that was both concentration- and time-dependent. DA release was significantly increased by 2µM MeHg at 60min and by 5µM MeHg at 30min; 1µM MeHg was without effect. Because DA release induced by 5µM MeHg was associated with a significant percentage of cell death at 60 and 120min, 2µM MeHg was chosen for further characterization of release mechanisms. MeHg-induced DA release was attenuated but not abolished in the absence of extracellular calcium, whereas the vesicular content depleting drug reserpine (50nM) abolished release. Thus, MeHg-induced DA release requires vesicular exocytosis but not extracellular calcium. MeHg also increased intracellular DA and the rate of DA storage utilization, suggesting a role for DA synthesis in MeHg-induced DA release. The tyrosine hydroxylase inhibitor α-methyltyrosine (300µM, 24h) completely abolished MeHg-induced DA release. MeHg significantly increased DA precursor accumulation in cells treated with 3-hydroxybenzylhydrazine (10µM), revealing that MeHg increases tyrosine hydroxylase activity. Overall, these data demonstrate that MeHg facilitates DA synthesis, increases intracellular DA, and augments vesicular exocytosis.
Because of the failure of single modality approaches, combination therapy for cancer treatment is a promising alternative. Sphingolipid analogs, with or without anticancer drugs, can improve tumor response. C16-pyridinium ceramide analog LCL30, was used in combination with photodynamic therapy (PDT), an anticancer treatment modality, to test the hypothesis that the combined treatment will trigger changes in the sphingolipid profile and promote cell death. Using SCCVII mouse squamous carcinoma cells, and the silicone phthalocyanine Pc 4 for PDT, we showed that combining PDT with LCL30 (PDT/LCL30) was more effective than individual treatments in raising global ceramide levels, as well as in reducing dihydrosphingosine levels. Unlike LCL30, PDT, alone or combined, increased total dihydroceramide levels. Sphingosine levels were unaffected by LCL30, but were abolished after PDT or the combination. LCL30-triggered rise in sphingosine-1-phosphate was reversed post-PDT or the combination. DEVDase activation was evoked after PDT or LCL30, and was promoted post- PDT/LCL30. Neither mitochondrial depolarization nor apoptosis were observed after any of the treatments. Notably, treatment with the combination resulted in augmented overall cell killing. Our data demonstrate that treatment with PDT/LCL30 leads to enhanced global ceramide levels and DEVDase activation in the absence of apoptosis, and promotion of total cell killing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.