Fixed-effects logit models can be useful in panel data analysis, when N units have been observed for T time periods. There are two main estimators for such models: unconditional maximum likelihood and conditional maximum likelihood. Judged on asymptotic properties, the conditional estimator is superior. However, the unconditional estimator holds several practical advantages, and therefore I sought to determine whether its use could be justified on the basis of finite-sample properties. In a series of Monte Carlo experiments for T < 20, I found a negligible amount of bias in both estimators when T ≥ 16, suggesting that a researcher can safely use either estimator under such conditions. When T < 16, the conditional estimator continued to have a very small amount of bias, but the unconditional estimator developed more bias as T decreased.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.