The novel betacoronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused a worldwide pandemic (COVID-19) after emerging in Wuhan, China. Here we analyzed public host and viral RNA sequencing data to better understand how SARS-CoV-2 interacts with human respiratory cells. We identified genes, isoforms and transposable element families that are specifically altered in SARS-CoV-2-infected respiratory cells. Well-known immunoregulatory genes including CSF2, IL32, IL-6 and SERPINA3 were differentially expressed, while immunoregulatory transposable element families were upregulated. We predicted conserved interactions between the SARS-CoV-2 genome and human RNA-binding proteins such as the heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1) and eukaryotic initiation factor 4 (eIF4b). We also identified a viral sequence variant with a statistically significant skew associated with age of infection, that may contribute to intracellular host–pathogen interactions. These findings can help identify host mechanisms that can be targeted by prophylactics and/or therapeutics to reduce the severity of COVID-19.
The novel betacoronavirus named Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) caused a worldwide pandemic (COVID-19) after initially emerging in Wuhan, China. Here we applied a novel, comprehensive bioinformatic strategy to public RNA sequencing and viral genome sequencing data, to better understand how SARS-CoV-2 interacts with human cells. To our knowledge, this is the first meta-analysis to predict host factors that play a specific role in SARS-CoV-2 pathogenesis, distinct from other respiratory viruses. We identified differentially expressed genes, isoforms and transposable element families specifically altered in SARS-CoV-2 infected cells. Well-known immunoregulators including CSF2, IL-32, IL-6 and SERPINA3 were differentially expressed, while immunoregulatory transposable element families were overexpressed. We predicted conserved interactions between the SARS-CoV-2 genome and human RNA-binding proteins such as hnRNPA1, PABPC1 and eIF4b, which may play important roles in the viral life cycle. We also detected four viral sequence variants in the spike, polymerase, and nonstructural proteins that correlate with severity of COVID-19. The host factors we identified likely represent important mechanisms in the disease profile of this pathogen, and could be targeted by prophylactics and/or therapeutics against SARS-CoV-2.
Publicly available RNA-sequencing (RNA-seq) data are a rich resource for elucidating the mechanisms of human disease; however, preprocessing these data requires considerable bioinformatic expertise and computational infrastructure. Analyzing multiple datasets with a consistent computational workflow increases the accuracy of downstream meta-analyses. This collection of datasets represents the human intracellular transcriptional response to disorders and diseases such as acute lymphoblastic leukemia (ALL), B-cell lymphomas, chronic obstructive pulmonary disease (COPD), colorectal cancer, lupus erythematosus; as well as infection with pathogens including Borrelia burgdorferi, hantavirus, influenza A virus, Middle East respiratory syndrome coronavirus (MERS-CoV), Streptococcus pneumoniae, respiratory syncytial virus (RSV), severe acute respiratory syndrome coronavirus (SARS-CoV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We calculated the statistically significant differentially expressed genes and Gene Ontology terms for all datasets. In addition, a subset of the datasets also includes results from splice variant analyses, intracellular signaling pathway enrichments as well as read mapping and quantification. All analyses were performed using well-established algorithms and are provided to facilitate future data mining activities, wet lab studies, and to accelerate collaboration and discovery.
The novel betacoronavirus named Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) caused a worldwide pandemic (COVID-19) after initially emerging in Wuhan, China. Here we applied a novel, comprehensive bioinformatic strategy to public RNA sequencing and viral genome sequencing data, to better understand how SARS-CoV-2 interacts with human cells. To our knowledge, this is the first meta-analysis to predict host factors that play a specific role in SARS-CoV-2 pathogenesis, distinct from other respiratory viruses. We identified differentially expressed genes, isoforms and transposable element families specifically altered in SARS-CoV-2 infected cells. Well-known immunoregulators including CSF2, IL-32, IL-6 and SERPINA3 were differentially expressed, while immunoregulatory transposable element families were overexpressed. We predicted conserved interactions between the SARS-CoV-2 genome and human RNA-binding proteins such as hnRNPA1, PABPC1 and eIF4b, which may play important roles in the viral life cycle. We also detected four viral sequence variants in the spike, polymerase, and nonstructural proteins that correlate with severity of COVID-19. The host factors we identified likely represent important mechanisms in the disease profile of this pathogen, and could be targeted by prophylactics and/or therapeutics against SARS-CoV-2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.