The synthesis and utility of a multimodal theranostic nanoagent based upon magnetofluorescent nanoparticles for the treatment of inflammatory atherosclerosis is described. These particles are modified with near-infrared fluorophores and light-activated therapeutic moieties, which allow for the optical determination of agent localization and phototoxic activation at spectrally distinct wavelengths. The resulting agent is readily taken up by murine macrophages in vitro, and is highly phototoxic, with an LD 50 of 430 pM. Intravenous administration results in the localization of the nanoagent within macrophage-rich atherosclerotic lesions that can be imaged by intravital fluorescence microscopy. Irradiation of the atheroma with 650 nm light in order to activate the therapeutic component results in eradication of inflammatory macrophages, which may induce lesion stabilization. Importantly, these agents display limited skin photosensitivity, are highly efficacious, and provide an integrated imaging and therapeutic nanoplatform for atherosclerosis.
In our US community hospital setting, TC-TAVR is a safe alternative to TF-TAVR in appropriate patients and has evolved to be our alternative access route of choice if TF access is not feasible.
In this prospective cohort of women, higher plasma concentrations and dietary magnesium intakes were associated with lower risks of SCD. If the observed association is causal, interventions directed at increasing dietary or plasma magnesium might lower the risk of SCD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.