The need for more performance from computer equipment in data centers has driven the power consumed to levels that are straining thermal management in the centers. When the computer industry switched from bipolar to CMOS transistors in the early 1990s, low-power CMOS technology was expected to resolve all problems associated with power and heat. However, equipment power consumption with CMOS has been rising at a rapid rate during the past 10 years and has surpassed power consumption from equipment installed with the bipolar technologies 10 to 15 years ago. Data centers are being designed with 15-20-year life spans, and customers must know how to plan for the power and cooling within these data centers. This paper provides an overview of some of the ongoing work to operate within the thermal environment of a data center. Some of the factors that affect the environmental conditions of data-communication (datacom) equipment within a data center are described. Since high-density racks clustered within a data center are of most concern, measurements are presented along with the conditions necessary to meet the datacom equipment environmental requirements. A number of numerical modeling experiments have been performed in order to describe the governing thermo-fluid mechanisms, and an attempt is made to quantify these processes through performance metrics.
This paper focuses on the effect on rack inlet air temperatures as a result of maldistribution of airflows exiting the perforated tiles located adjacent to the fronts of the racks. The flow distribution exiting the perforated tiles was generated from a computational fluid dynamics (CFD) tool called Tileflow (trademark of Innovative Research, Inc.). Both raised floor heights and perforated tile-free areas were varied in order to explore the effect on rack inlet temperatures. The flow distribution exiting the perforated tiles was used as boundary conditions to the above-floor CFD model. A CFD model was generated for the room with electronic equipment installed on a raised floor. Forty racks of data processing (DP) equipment were arranged in rows in a data center cooled by chilled air exhausting from perforated floor tiles. The chilled air was provided by four A/C units placed inside a room 12.1 m wide×13.4 m long. Because the arrangement of the racks in the data center was symmetric, only half of the data center was modeled. The numerical modeling for the area above the raised floor was performed using a commercially available finite control volume computer code called Flotherm (trademark of Flomerics, Inc.). The flow was modeled using the k-e turbulence model. Results are displayed to provide some guidance on the design and layout of a data center.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.