Allogeneic lung transplant is limited both by the shortage of available donor lungs and by the lack of suitable long-term lung assist devices to bridge patients to lung transplantation. Avian lungs have different structure and mechanics resulting in more efficient gas exchange than mammalian lungs. Decellularized avian lungs, recellularized with human lung cells, could therefore provide a powerful novel gas exchange unit for potential use in pulmonary therapeutics. To initially assess this in both small and large avian lung models, chicken (Gallus gallus domesticus) and emu (Dromaius novaehollandiae) lungs were decellularized using modifications of a detergent-based protocol, previously utilized with mammalian lungs. Light and electron microscopy, vascular and airway resistance, quantitation and gel analyses of residual DNA, and immunohistochemical and mass spectrometric analyses of remaining extracellular matrix (ECM) proteins demonstrated maintenance of lung structure, minimal residual DNA, and retention of major ECM proteins in the decellularized scaffolds. Seeding with human bronchial epithelial cells, human pulmonary vascular endothelial cells, human mesenchymal stromal cells, and human lung fibroblasts demonstrated initial cell attachment on decellularized avian lungs and growth over a 7-day period. These initial studies demonstrate that decellularized avian lungs may be a feasible approach for generating functional lung tissue for clinical therapeutics.
Semisynthetic glycosaminoglycan ethers (SAGEs) are short, sulfated hyaluronans which combine the natural properties of hyaluronan with chemical sulfation. In a murine model, SAGEs provide protection against radiation induced proctitis (RIP), a side effect of lower abdominal radiotherapy for cancer. The anti-inflammatory effects of SAGE have been studied in inflammatory diseases at mucosal barrier sites; however, few mechanisms have been uncovered necessitating high throughput methods. SAGEs were combined with silk-elastinlike polymers (SELPs) to enhance rectal accumulation in mice. After high radiation exposure to the lower abdominal area, mice were followed for 3 days or until they met humane endpoints, before evaluation of behavioral pain responses and histological assessment of rectal inflammation. RNA sequencing was conducted on tissues from the 3-day cohort to determine molecular mechanisms of SAGE–SELP. After 3 days, mice receiving the SAGE–SELP combination yielded significantly lowered pain responses and amelioration of radiation-induced rectal inflammation. Mice receiving the drug–polymer combination survived 60% longer than other irradiated mice, with a fraction exhibiting long term survival. Sequencing reveals varied regulation of toll like receptors, antioxidant activities, T-cell signaling, and pathways associated with pain. This investigation elucidates several molecular mechanisms of SAGEs and exhibits promising measures for prevention of RIP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.