Key Words megacity biogeochemistry, city succession, industrial metabolism, air pollution, system simulations s Abstract This paper reviews the available data and models on energy and material flows through the world's 25 largest cities. Throughput is categorized as stored, transformed, or passive for the major flow modes. The aggregate, fuel, food, water, and air cycles are all examined. Emphasis is placed on atmospheric pathways because the data are abundant. Relevant models of urban energy and material flows, demography, and atmospheric chemistry are discussed. Earth system-level loops from cities to neighboring ecosystems are identified. Megacities are somewhat independent of their immediate environment for food, fuel, and aggregate inputs, but all are constrained by their regional environment for supplying water and absorbing wastes. We elaborate on analogies with biological metabolism and ecosystem succession as useful conceptual frameworks for addressing urban ecological problems. We conclude that whereas data are numerous for some individual cities, cross-cutting compilations are lacking in biogeochemical analysis and modeling. Synthesis of the existing information will be a crucial first step. Cross-cutting field research and integrated, multidisciplinary simulations will be necessary.
We analysed a 50-year dataset of avian species observations to determine how richness and community composition varied over a period of landscape-scale environmental change. Our study area, northern lower Michigan, has experienced substantial land-use and land-cover change over time. Like much of the northern Midwest, it has shifted from a largely unpopulated, post-logging shrubland to a moderately populated closed-canopy forest. Such changes are generally expected to influence overall richness and community composition. We found that regional richness per year remained virtually unchanged over the study period. Yearto-year variation in species number was surprisingly low. Richness totals included vastly different species groups as the composition of the regional bird community changed substantially over time.Changes in the types of species present appear to reflect deterministic changes in habitat. The number of grassland and open-habitat species decreased, for example, while species associated with older forests and urban habitats increased. Our results suggest that habitat changes at the landscape scale do not necessarily lead to changes in the number of species a region can support. Such changes, however, do appear to influence the types of species that will occupy a region, and can lead to substantial changes in community composition.
Urban areas and their voracious appetites are increasingly dominating the flows of energy and materials around the globe. Understanding the size distribution and dynamics of urban areas is vital if we are to manage their growth and mitigate their negative impacts on global ecosystems. For over 50 years, city size distributions have been assumed to universally follow a power function, and many theories have been put forth to explain what has become known as Zipf's law (the instance where the exponent of the power function equals unity). Most previous studies, however, only include the largest cities that comprise the tail of the distribution. Here we show that national, regional and continental city size distributions, whether based on census data or inferred from cluster areas of remotely-sensed nighttime lights, are in fact lognormally distributed through the majority of cities and only approach power functions for the largest cities in the distribution tails. To explore generating processes, we use a simple model incorporating only two basic human dynamics, migration and reproduction, that nonetheless generates distributions very similar to those found empirically. Our results suggest that macroscopic patterns of human settlements may be far more constrained by fundamental ecological principles than more fine-scale socioeconomic factors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.