From September 2006 to June 2009, an autonomous acoustic recorder measured ambient noise north of Barrow, Alaska on the continental slope at 235 m depth, between the Chukchi and Beaufort Seas. Mean monthly spectrum levels, selected to exclude impulsive events, show that months with open-water had the highest noise levels (80-83 dB re: 1 μPa(2)/Hz at 20-50 Hz), months with ice coverage had lower spectral levels (70 dB at 50 Hz), and months with both ice cover and low wind speeds had the lowest noise levels (65 dB at 50 Hz). During ice covered periods in winter-spring there was significant transient energy between 10 and 100 Hz from ice fracture events. During ice covered periods in late spring there were significantly fewer transient events. Ambient noise increased with wind speed by ~ 1 dB/m/s for relatively open-water (0%-25% ice cover) and by ~ 0.5 dB/m/s for nearly complete ice cover (> 75%). In September and early October for all years, mean noise levels were elevated by 2-8 dB due to the presence of seismic surveys in the Chukchi and Beaufort Seas.
Acoustic recordings from Palmyra Atoll, northern Line Islands, central Pacific, showed upsweep frequency modulated pulses reminiscent of those produced by beaked whales. These signals had higher frequencies, broader bandwidths, longer pulse durations and shorter inter-pulse intervals than previously described pulses of Blainville's, Cuvier's and Gervais' beaked whales [Zimmer et al. (2005). J. Acoust. Soc. Am. 117, 3919-3927; Johnson et al. (2006). J. Exp. Biol. 209, 5038-5050; Gillespie et al. (2009). J. Acoust. Soc. Am. 125, 3428-3433]. They were distinctly different temporally and spectrally from the unknown beaked whale at Cross Seamount, HI [McDonald et al. (2009). J. Acoust. Soc. Am. 125, 624-627]. Genetics on beaked whale specimens found at Palmyra Atoll suggest the presence of a poorly known beaked whale species. Mesoplodon sp. might be the source of the FM pulses described in this paper. The Palmyra Atoll FM pulse peak frequency was at 44 kHz with a -10 dB bandwidth of 26 kHz. Mean pulse duration was 355 mus and inter-pulse interval was 225 ms, with a bimodal distribution. Buzz sequences were detected with inter-pulse intervals below 20 ms and unmodulated spectra, with about 20 dB lower amplitude than prior FM pulses. These clicks had a 39 kHz bandwidth (-10 dB), peak frequency at 37 kHz, click duration 155 mus, and inter-click interval between 4 and 10 ms.
ABSTRACT. The acoustic repertoires of ringed, bearded, and ribbon seals are described, along with their seasonal occurrence and relationship to sea ice concentration. Acoustic recordings were made between September and June over three years (2006 -09) along the continental slope break in the Chukchi Sea, 120 km north-northwest of Barrow, Alaska. Vocalizations of ringed and bearded seals occurred in winter and during periods of 80% -100% ice cover but were mostly absent during open water periods. The presence of ringed and bearded seal calls throughout winter and spring suggests that some portion of their population is overwintering. Analysis of the repertoire of ringed and bearded seal calls shows seasonal variation. Ringed seal calls are primarily barks in winter and yelps in spring, while bearded seal moans increase during spring. Ribbon seal calls were detected only in the fall of 2008 during the open water period. The repertoire of known ribbon seal vocalizations was expanded to include three additional calls, and two stereotyped call sequences were common. Retrospective analyses of ringed seal recordings from 1982 and ribbon seal recordings from 1967 showed a high degree of stability in call repertoire across large spatial and temporal scales.Key words: ringed seal, bearded seal, ribbon seal, Arctic phocid, call repertoire, seasonality, vocalization, sea ice RÉSUMÉ. Le répertoire acoustique des phoques annelés, des phoques barbus et des phoques à bandes sont décrits, de même que leur présence saisonnière et leur rapport avec la concentration de glace de mer. Des enregistrements acoustiques ont été effectués entre septembre et juin sur une période de trois ans (2006 -2009), le long de la rupture de la pente continentale, dans la mer des Tchouktches, à 120 km au nord-nord-ouest de Barrow, en Alaska. Les vocalisations de phoques annelés et de phoques barbus étaient présentes pendant l'hiver et pendant les périodes où la concentration de glace était de 80 % à 100 %, mais elles se faisaient rares pendant les périodes d'eau libre. La présence des cris de phoques annelés et de phoques barbus tout au long de l'hiver et du printemps suggère qu'une partie de leur population hiverne. L'analyse du répertoire de cris de phoques annelés et de phoques barbus indique une variation saisonnière. L'hiver, le cri du phoque annelé prend principalement la forme d'aboiements, tandis que le printemps, il prend la forme de glapissements. Les gémissements du phoque barbu s'intensifient au printemps. Le cri des phoques à bandes n'a été capté qu'à l'automne 2008, pendant la période des eaux libres. Le répertoire des vocalisations connues du phoque à bandes a été élargi pour inclure trois autres cris, bien que deux séquences de cris stéréotypées étaient courantes. L'analyse rétrospective des enregistrements de cris de phoques annelés de 1982 et de phoques à bandes de 1967 a laissé entrevoir une grande stabilité du point de vue du répertoire des cris, et ce, sur de vastes échelles spatiales et temporelles.Mots clés : phoque annelé, pho...
In 2008 the Louis S. St-Laurent (LSSL) surveyed deep Arctic waters using a three-airgun seismic source. Signals from the seismic survey were detected between 400 km and 1300 km range on a directional autonomous acoustic recorder deployed in water 53 m deep off the Alaskan North Slope. Observations of received signal levels between 10-450 Hz versus LSSL range roughly fit a cylindrical transmission loss model plus 0.01 dB/km attenuation in deep ice-free waters, and fit previous empirical models in ice-covered waters. The transition between ice-free and ice-covered propagation conditions shifted 200 km closer to the recorder during the survey.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.