Objective Current global trends on natural therapeutics suggest an increasing market interest toward the use and discovery of new plant-derived therapeutic compounds, often referred to as traditional medicine (TM). The Cannabis industry is currently one such focal area receiving attention, owing to the occurrence of phytocannabinoids (pCBs) which have shown promise in health-promotion and disease prevention. However, the occurrence of pCBs in other plant species are often overlooked and rarely studied. Leonotis leonurus (L.) R. Br. is endemic to South Africa with a rich history of use in TM practices amongst indigenous people and, has been recorded to induce mild psychoactive effects akin to Cannabis. While the leaves have been well-reported to contain therapeutic phytochemicals, little information exists on the flowers. Consequently, as part of a larger research venture, we targeted the flowers of L. leonurus for the identification of potential pCB or pCB-like compounds.Results Flower extracts were separated and analyzed using high performance thin layer chromatography (HPTLC). A single pCB candidate was isolated from HPTLC plates and, using liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS), identified as 7,10,13,16-Docosatetraenoylethanolamine (adrenoyl-EA). Adrenoyl-EA is a known bioactive pCB-like compound reported to occur in only one other plant species, Tropaeolum tuberosum.
Objective Current global trends on natural therapeutics suggest an increasing market interest toward the use and discovery of new plant-derived therapeutic compounds, often referred to as traditional medicine (TM). The Cannabis industry is currently one such focal area receiving attention, owing to the occurrence of phytocannabinoids (pCBs) which have shown promise in health-promotion and disease prevention. However, the occurrence of pCBs in other plant species are often overlooked and rarely studied. Leonotis leonurus (L.) R. Br. is endemic to South Africa with a rich history of use in TM practices amongst indigenous people and, has been recorded to induce mild psychoactive effects akin to Cannabis. While the leaves have been well-reported to contain therapeutic phytochemicals, little information exists on the flowers. Consequently, as part of a larger research venture, we targeted the flowers of L. leonurus for the identification of potential pCB or pCB-like compounds. Results Flower extracts were separated and analyzed using high performance thin layer chromatography (HPTLC). A single pCB candidate was isolated from HPTLC plates and, using liquid chromatography coupled to tandem mass spectrometry (LC–MS/MS), we could successfully group this compound as a fatty amide and tentatively identified as 7,10,13,16-Docosatetraenoylethanolamine (adrenoyl-EA), a known bioactive compound.
ObjectiveCurrent global trends on natural therapeutics suggest an increasing market interest toward the use and discovery of new plant-derived therapeutic compounds, often referred to as traditional medicine (TM). The Cannabis industry is currently one such focal area receiving attention, owing to the occurrence of phytocannabinoids (pCBs) which have shown promise in health-promotion and disease prevention. However, the occurrence of pCBs in other plant species are often overlooked and rarely studied.Leonotis leonurus (L.) R. Br. is endemic to South Africa with a rich history of use in TM practices amongst indigenous people and, has been recorded to induce mild psychoactive effects akin to Cannabis. While the leaves have been well-reported to contain therapeutic phytochemicals, little information exists on the flowers. Consequently, as part of a larger research venture, we targeted the flowers of L. leonurus for the identification of potential pCB or pCB-like compounds.ResultsFlower extracts were separated and analyzed using high performance thin layer chromatography (HPTLC). A single pCB candidate was isolated from HPTLC plates and, using liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS), we could successfully group this compound as a fatty amide and tentatively identified as 7,10,13,16-Docosatetraenoylethanolamine (adrenoyl-EA), a known bioactive compound.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.