Assembly of microdevices from constituent parts currently relies on slow serial steps via direct assembly processes such as pick-and-place operations. Template Electrokinetic Assembly (TEA), a guided, noncontact assembly process, is presented in this work as a promising alternative to serial assembly processes. To characterize the process and its implementation of electrokinetic, dielectrophoretic, and electro-osmotic phenomena, we conducted studies to examine the assembly of polymer microparticles at specific locations on glassy carbon interdigitated electrode arrays (IDEAs). The IDEAs are coated with a layer of lithographically patterned resist, so that when an AC electric field is applied to the IDEA, microparticles suspended in the aqueous solution are attracted to the open regions of the electrodes not covered by photoresist. Interplay between AC electro-osmosis and dielectrophoretic forces guides 1 and 5 μm diameter polystyrene beads to assemble in regions, or “wells”, uncovered by photoresist atop the electrodes. It was discovered that AC electro-osmosis under an applied frequency of 1 kHz is sufficient to effectively agglomerate 1 μm beads in the wells, whereas a stepwise process involving the application of a 1 MHz signal, followed by a 1 kHz signal, is required for the positioning of 5 μm beads, which are mainly affected by dielectrophoretic forces. Permanent entrapment of the microparticles is then demonstrated via the electropolymerization process of the conducting polymer polypyrrole.
Carbon Nanotube (CNT) agglomerates can be aligned along field lines between adjacent electrodes to form conductive bridges. This study discusses the step-wise process of dielectrophoretic deposition of CNTs to form conducting bridges between adjacent electrodes. For the first time, the creation of conductive CNT bridges spanning lengths over 50 microns is demonstrated. The CNT bridges are permanently secured using electrodeposition of the conducting polymer polypyrrole. Morphologies of the CNT bridges formed within a frequency range of 1 kHz and 10 MHz are explored and explained as a consequence of interplay between dielectrophoretic and electroosmotic forces. Postdeposition heat treatment increases the conductivity of CNT bridges, likely due to solvent evaporation and resulting surface tension inducing better contact between CNTs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.