Multiparametric magnetic resonance imaging (mpMRI), which combines traditional anatomic and newer quantitative MRI methods, has been shown to result in improved voxel-wise classification of prostate cancer as compared with any single MRI parameter. While these results are promising, substantial heterogeneity in the mpMRI parameter values and voxel-wise prostate cancer risk has been observed both between and within regions of the prostate. This suggests that classification of prostate cancer can potentially be improved by incorporating structural information into the classifier. In this paper, we propose a novel voxel-wise classifier of prostate cancer that accounts for the anatomic structure of the prostate by Bayesian hierarchical modeling, which can be combined with post hoc spatial Gaussian kernel smoothing to account for residual spatial correlation. Our proposed classifier results in significantly improved area under the ROC curve (0.822 vs 0.729, P < .001) and sensitivity corresponding to 90% specificity (0.599 vs 0.429, P < .001), compared with a baseline model that does not account for the anatomic structure of the prostate. Furthermore, the classifier can also be applied on voxels with missing mpMRI parameters, resulting in similar performance, which is an important practical consideration that cannot be easily accommodated using regression-based classifiers. In addition, our classifier achieved high computational efficiency with a closed-form solution for the posterior predictive cancer probability.
Prostate cancer (PCa) is a major cause of cancer death among men. The histopathological examination of post-surgical prostate specimens and manual annotation of PCa not only allow for detailed assessment of disease characteristics and extent, but also supply the ground truth for developing of computer-aided diagnosis (CAD) systems for PCa detection before definitive treatment. As manual cancer annotation is tedious and subjective, there have been a number of publications describing methods for automating the procedure via the analysis of digitized whole-slide images (WSIs). However, these studies have focused only on the analysis of WSIs stained with hematoxylin and eosin (H&E), even though there is additional information that could be obtained from immunohistochemical (IHC) staining. In this work, we propose a framework for automating the annotation of PCa that is based on automated colorimetric analysis of both H&E and IHC WSIs stained with a triple-antibody cocktail against high-molecular weight cytokeratin (HMWCK), p63, and α-methylacyl CoA racemase (AMACR). The analysis outputs were then used to train a regression model to estimate the distribution of cancerous epithelium within slides. The approach yielded an AUC of 0.951, sensitivity of 87.1%, and specificity of 90.7% as compared to slide-level annotations, and generalized well to cancers of all grades.
The proposed measures allow for the assessment of lesion detection performance, which is most relevant in a clinical setting and would not be possible to do with voxel-wise measures alone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.