Background: An induced loss of balance resulting from a postural perturbation has been reported as the primary source for postural instability leading to falls. Hence; early detection of postural instability with novel wearable sensor-based measures may aid in reducing falls and fall-related injuries. The purpose of the study was to validate the use of a stretchable soft robotic sensor (SRS) to detect ankle joint kinematics during both unexpected and expected slip and trip perturbations. Methods: Ten participants (age: 23.7 ± 3.13 years; height: 170.47 ± 8.21 cm; mass: 82.86 ± 23.4 kg) experienced a counterbalanced exposure of an unexpected slip, an unexpected trip, an expected slip, and an expected trip using treadmill perturbations. Ankle joint kinematics for dorsiflexion and plantarflexion were quantified using three-dimensional (3D) motion capture through changes in ankle joint range of motion and using the SRS through changes in capacitance when stretched due to ankle movements during the perturbations. Results: A greater R-squared and lower root mean square error in the linear regression model was observed in comparing ankle joint kinematics data from motion capture with stretch sensors. Conclusions: Results from the study demonstrated that 71.25% of the trials exhibited a minimal error of less than 4.0 degrees difference from the motion capture system and a greater than 0.60 R-squared value in the linear model; suggesting a moderate to high accuracy and minimal errors in comparing SRS to a motion capture system. Findings indicate that the stretch sensors could be a feasible option in detecting ankle joint kinematics during slips and trips.
Context
Individuals with chronic ankle instability (CAI) demonstrate altered lower limb movement dynamics during jump landings, which can contribute to recurrent injury. However, the literature examining lower limb movement dynamics during a side-cutting task in individuals with CAI is limited.
Objective
To assess lower limb joint kinetics and sagittal-plane joint stiffness during the stance phase of a side-cutting task in individuals with or without CAI.
Design
Cohort study.
Setting
Motion-capture laboratory.
Patients or Other Participants
Fifteen physically active, young adults with CAI (7 men, 8 women; age = 21.3 ± 1.6 years, height = 171.0 ± 11.2 cm, mass = 73.4 ± 15.2 kg) and 15 healthy matched controls (7 men, 8 women; age = 21.5 ± 1.5 years, height = 169.9 ± 10.6 cm, mass = 75.5 ± 13.0 kg).
Intervention(s)
Lower limb 3-dimensional kinematic and ground reaction force data were recorded while participants completed 3 successful trials of a side-cutting task. Net internal joint moments, in addition to sagittal-plane ankle-, knee-, and hip-joint stiffness, were computed from 3-dimensional kinematic and ground reaction force data during the stance phase of the side-cutting task and analyzed.
Main Outcome Measure(s)
Data from each participant's stance phase were normalized to 100% from initial foot contact (0%) to toe-off (100%) to compute means, standard deviations, and Cohen d effect sizes for all dependent variables.
Results
The CAI group exhibited a reduced ankle-eversion moment (39%–81% of stance phase) and knee-abduction moment (52%–75% of stance phase) and a greater ankle plantar-flexion moment (3%–16% of stance phase) than the control group (P range = .009–.049). Sagittal-plane hip-joint stiffness was greater in the CAI than in the control group (t28 = 1.978, P = .03).
Conclusions
Our findings suggest that altered ankle-joint kinetics and increased hip-joint stiffness were associated when individuals with CAI performed a side-cutting task. These lower limb kinetic changes may contribute to an increased risk of recurrent lateral ankle sprains in people with CAI. Clinicians and practitioners can use these findings to develop rehabilitation programs for improving maladaptive movement mechanics in individuals with CAI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.