Porcine faecal waste is a serious environmental pollutant. Carriage of antimicrobial-resistance genes (ARGs) and virulence-associated genes (VAGs), and the zoonotic potential of commensal Escherichia coli from swine are largely unknown. Furthermore, little is known about the role of commensal E. coli as contributors to the mobilization of ARGs between food animals and the environment. Here, we report whole-genome sequence analysis of 103 class 1 integron-positive E. coli from the faeces of healthy pigs from two commercial production facilities in New South Wales, Australia. Most strains belonged to phylogroups A and B1, and carried VAGs linked with extraintestinal infection in humans. The 103 strains belonged to 37 multilocus sequence types and clonal complex 10 featured prominently. Seventeen ARGs were detected and 97 % (100/103) of strains carried three or more ARGs. Heavy-metal-resistance genes merA, cusA and terA were also common. IS26 was observed in 98 % (101/103) of strains and was often physically associated with structurally diverse class 1 integrons that carried unique genetic features, which may be tracked. This study provides, to our knowledge, the first detailed genomic analysis and point of reference for commensal E. coli of porcine origin in Australia, facilitating tracking of specific lineages and the mobile resistance genes they carry.
The spread of multidrug resistance via mobile genetic elements is a major clinical and veterinary concern. Pathogenic Escherichia coli harbour antibiotic resistance and virulence genes mainly on plasmids, but also bacteriophages and hybrid phage-like plasmids. In this study, the genomes of three E. coli phage-like plasmids, pJIE250-3 from a human E. coli clinical isolate, pSvP1 from a porcine ETEC O157 isolate, and pTZ20_1P from a porcine commensal E. coli, were sequenced (PacBio RSII), annotated and compared. All three elements are coliphage P1 variants, each with unique adaptations. pJIE250-3 is a P1-derivative that has lost lytic functions and contains no accessory genes. In pTZ20_1P and pSvP1, a core P1-like genome is associated with insertion sequence-mediated acquisition of plasmid modules encoding multidrug resistance and virulence, respectively. The transfer ability of pTZ20_1P, carrying antibiotic resistance markers, was also tested and, although this element was not able to transfer by conjugation, it was able to lysogenize a commensal E. coli strain with consequent transfer of resistance. The incidence of P1-like plasmids (~7%) in our E. coli collections correlated well with that in public databases. This study highlights the need to investigate the contribution of phage-like plasmids to the successful spread of antibiotic resistant pathotypes.
IncHI2 ST3 plasmids are known carriers of multiple antimicrobial resistance genes. Complete plasmid sequences from multiple drug resistant Escherichia coli circulating in Australian swine is however limited. Here we sequenced two related IncHI2 ST3 plasmids, pSDE-SvHI2, and pSDC-F2_12BHI2, from phylogenetically unrelated multiple-drug resistant Escherichia coli strains SvETEC (CC23:O157:H19) and F2_12B (ST93:O7:H4) from geographically disparate pig production operations in New South Wales, Australia. Unicycler was used to co-assemble short read (Illumina) and long read (PacBio SMRT) nucleotide sequence data. The plasmids encoded three drug-resistance loci, two of which carried class 1 integrons. One integron, hosting drfA12-orfF-aadA2, was within a hybrid Tn1721/Tn21, with the second residing within a copper/silver resistance transposon, comprising part of an atypical sul3-associated structure. The third resistance locus was flanked by IS15DI and encoded neomycin resistance (neoR). An oqx-encoding transposon (quinolone resistance), similar in structure to Tn6010, was identified only in pSDC-F2_12BHI2. Both plasmids showed high sequence identity to plasmid pSTM6-275, recently described in Salmonella enterica serotype 1,4,[5],12:i:-that has risen to prominence and become endemic in Australia. IncHI2 ST3 plasmids circulating in commensal and pathogenic E. coli from Australian swine belong to a lineage of plasmids often in association with sul3 and host multiple complex antibiotic and metal resistance structures, formed in part by IS26.
Escherichia coli ST131 is a globally dispersed extraintestinal pathogenic E. coli lineage contributing significantly to hospital and community acquired urinary tract and bloodstream infections. Here we describe a detailed phylogenetic analysis of the whole genome sequences of 284 Australian ST131 E. coli isolates from diverse sources, including clinical, food and companion animals, wildlife and the environment. Our phylogeny and the results of single nucleotide polymorphism (SNP) analysis show the typical ST131 clade distribution with clades A, B and C clearly displayed, but no niche associations were observed. Indeed, interspecies relatedness was a feature of this study. Thirty-five isolates (29 of human and six of wild bird origin) from clade A (32 fimH41, 2 fimH89, 1 fimH141) were observed to differ by an average of 76 SNPs. Forty-five isolates from clade C1 from four sources formed a cluster with an average of 46 SNPs. Within this cluster, human sourced isolates differed by approximately 37 SNPs from isolates sourced from canines, approximately 50 SNPs from isolates from wild birds, and approximately 52 SNPs from isolates from wastewater. Many ST131 carried resistance genes to multiple antibiotic classes and while 41 (14 %) contained the complete class one integron–integrase intI1, 128 (45 %) isolates harboured a truncated intI1 (462–1014 bp), highlighting the ongoing evolution of this element. The module intI1–dfrA17–aadA5–qacEΔ1–sul1–ORF–chrA–padR–IS1600–mphR–mrx–mphA, conferring resistance to trimethoprim, aminoglycosides, quaternary ammonium compounds, sulphonamides, chromate and macrolides, was the most common structure. Most (73 %) Australian ST131 isolates carry at least one extended spectrum β-lactamase gene, typically bla CTX-M-15 and bla CTX-M-27. Notably, dual parC-1aAB and gyrA-1AB fluoroquinolone resistant mutations, a unique feature of clade C ST131 isolates, were identified in some clade A isolates. The results of this study indicate that the the ST131 population in Australia carries diverse antimicrobial resistance genes and plasmid replicons and indicate cross-species movement of ST131 strains across diverse reservoirs.
BackgroundEnterotoxigenic Escherichia coli (ETEC) are a major economic threat to pig production globally, with serogroups O8, O9, O45, O101, O138, O139, O141, O149 and O157 implicated as the leading diarrhoeal pathogens affecting pigs below four weeks of age. A multiple antimicrobial resistant ETEC O157 (O157 SvETEC) representative of O157 isolates from a pig farm in New South Wales, Australia that experienced repeated bouts of pre- and post-weaning diarrhoea resulting in multiple fatalities was characterized here. Enterohaemorrhagic E. coli (EHEC) O157:H7 cause both sporadic and widespread outbreaks of foodborne disease, predominantly have a ruminant origin and belong to the ST11 clonal complex. Here, for the first time, we conducted comparative genomic analyses of two epidemiologically-unrelated porcine, disease-causing ETEC O157; E. coli O157 SvETEC and E. coli O157:K88 734/3, and examined their phylogenetic relationship with EHEC O157:H7.ResultsO157 SvETEC and O157:K88 734/3 belong to a novel sequence type (ST4245) that comprises part of the ST23 complex and are genetically distinct from EHEC O157. Comparative phylogenetic analysis using PhyloSift shows that E. coli O157 SvETEC and E. coli O157:K88 734/3 group into a single clade and are most similar to the extraintestinal avian pathogenic Escherichia coli (APEC) isolate O78 that clusters within the ST23 complex. Genome content was highly similar between E. coli O157 SvETEC, O157:K88 734/3 and APEC O78, with variability predominantly limited to laterally acquired elements, including prophages, plasmids and antimicrobial resistance gene loci. Putative ETEC virulence factors, including the toxins STb and LT and the K88 (F4) adhesin, were conserved between O157 SvETEC and O157:K88 734/3. The O157 SvETEC isolate also encoded the heat stable enterotoxin STa and a second allele of STb, whilst a prophage within O157:K88 734/3 encoded the serum survival gene bor. Both isolates harbor a large repertoire of antibiotic resistance genes but their association with mobile elements remains undetermined.ConclusionsWe present an analysis of the first draft genome sequences of two epidemiologically-unrelated, pathogenic ETEC O157. E. coli O157 SvETEC and E. coli O157:K88 734/3 belong to the ST23 complex and are phylogenetically distinct to EHEC O157 lineages that reside within the ST11 complex.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-015-1382-y) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.