UNSTRUCTURED Patient readmission is preventable and predictable. However, it poses a major problem in healthcare worldwide. Successful prediction of readmission based on a patient’s past conditions, physical traits and current diagnosis would be a productive step forward towards reducing the stress readmission has on the healthcare system as well as the financial stress associated with it. The goal of this study is to design a predictive model that describes patient readmission in an optimally cost-effective manner that minimizes false negatives, and compare it to the cost of prolonging a patient’s length of stay. An ensemble prediction model was built using 5 classification submodels aiming to predict whether a patient is likely to be readmitted within 30 days. The model’s training on the Canadian Institute for Health Information’s Discharge Abstract Database yielded a precision score of of 74% and an f1-score of 46%. The ensemble prediction model resulted in being more effective than previous submodels because it minimized both variance and bias. This suggests the model is a viable candidate. To further analyze the resource trade-offs of prolonged stay, the expected length of Stay (ELOS) and resource intensity weight value (RIW) columns of the dataset were graphed then clustered using k-means. Based on the final model, the construction proved comparable to previous methods implemented in the literature, making it an overall efficient and robust model. Hence, quality data collection and construction of an ensemble readmission collection model should be a major area of focus and resource allocation for healthcare institutes worldwide.
Background Unplanned patient readmissions within 30 days of discharge pose a substantial challenge in Canadian health care economics. To address this issue, risk stratification, machine learning, and linear regression paradigms have been proposed as potential predictive solutions. Ensemble machine learning methods, such as stacked ensemble models with boosted tree algorithms, have shown promise for early risk identification in specific patient groups. Objective This study aims to implement an ensemble model with submodels for structured data, compare metrics, evaluate the impact of optimized data manipulation with principal component analysis on shorter readmissions, and quantitatively verify the causal relationship between expected length of stay (ELOS) and resource intensity weight (RIW) value for a comprehensive economic perspective. Methods This retrospective study used Python 3.9 and streamlined libraries to analyze data obtained from the Discharge Abstract Database covering 2016 to 2021. The study used 2 sub–data sets, clinical and geographical data sets, to predict patient readmission and analyze its economic implications, respectively. A stacking classifier ensemble model was used after principal component analysis to predict patient readmission. Linear regression was performed to determine the relationship between RIW and ELOS. Results The ensemble model achieved precision and slightly higher recall (0.49 and 0.68), indicating a higher instance of false positives. The model was able to predict cases better than other models in the literature. Per the ensemble model, readmitted women and men aged 40 to 44 and 35 to 39 years, respectively, were more likely to use resources. The regression tables verified the causality of the model and confirmed the trend that patient readmission is much more costly than continued hospital stay without discharge for both the patient and health care system. Conclusions This study validates the use of hybrid ensemble models for predicting economic cost models in health care with the goal of reducing the bureaucratic and utility costs associated with hospital readmissions. The availability of robust and efficient predictive models, as demonstrated in this study, can help hospitals focus more on patient care while maintaining low economic costs. This study predicts the relationship between ELOS and RIW, which can indirectly impact patient outcomes by reducing administrative tasks and physicians’ burden, thereby reducing the cost burdens placed on patients. It is recommended that changes to the general ensemble model and linear regressions be made to analyze new numerical data for predicting hospital costs. Ultimately, the proposed work hopes to emphasize the advantages of implementing hybrid ensemble models in forecasting health care economic cost models, empowering hospitals to prioritize patient care while simultaneously decreasing administrative and bureaucratic expenses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.