Society increasingly demands accurate predictions of complex ecosystem processes under novel conditions to address environmental challenges. However, obtaining the process‐level knowledge required to do so does not necessarily align with the burgeoning use in ecology of correlative model selection criteria, such as Akaike information criterion. These criteria select models based on their ability to reproduce outcomes, not on their ability to accurately represent causal effects. Causal understanding does not require matching outcomes, but rather involves identifying model forms and parameter values that accurately describe processes. We contend that researchers can arrive at incorrect conclusions about cause‐and‐effect relationships by relying on information criteria. We illustrate via a specific example that inference extending beyond prediction into causality can be seriously misled by information‐theoretic evidence. Finally, we identify a solution space to bridge the gap between the correlative inference provided by model selection criteria and a process‐based understanding of ecological systems.
Many fishers own a portfolio of permits across multiple fisheries, creating an opportunity for fishing effort to adjust across fisheries and enabling impacts from a policy change in one fishery to spill over into other fisheries. In regions with a large and diverse number of permits and fisheries, joint-permitting can result in a complex system, making it difficult to understand the potential for cross-fishery substitution. In this study, we construct a network representation of permit ownership to characterize interconnectedness among Alaska commercial fisheries due to cross-fishery permitting. The Alaska fisheries network is highly connected, suggesting that most fisheries are vulnerable to cross-fishery spillovers from network shocks, such as changes to policies or fish stocks. We find that fisheries with similar geographic proximity are more likely to be a part of a highly connected cluster of susceptible fisheries. We use a case study to show that preexisting network statistics can be useful for identifying the potential scope of policy-induced spillovers. Our results demonstrate that network analysis can improve our understanding of the potential for policy-induced cross-fishery spillovers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.