The quantum Monte Carlo algorithm can provide significant speedup compared to its classical counterpart. So far, most reported works have utilized Grover’s state preparation algorithm. However, this algorithm relies on costly controlled Y rotations to apply the correct amplitudes onto the superposition states. Recently, a comparison-based state preparation method was proposed to reduce computational complexity by avoiding rotation operations. One critical aspect of this method is the generation of the comparison threshold associated with the amplitude of the quantum superposition states. The direct computation of the comparison threshold is often very costly. An alternative is to estimate the threshold with a Taylor approximation. However, Taylor approximations do not work well with heavy-tailed distribution functions such as the Cauchy distribution, which is widely used in applications such as financial modeling. Therefore, a new state preparation method needs to be developed. In this study, an efficient comparison-based state preparation method is proposed for the heavy-tailed Cauchy distribution. Instead of a single Taylor approximation for the entire function domain, this study uses quantum piecewise arithmetic to increase accuracy and reduce computational cost. The proposed piecewise function is in the simplest form to estimate the comparison threshold associated with the amplitudes. Numerical analysis shows that the number of required subdomains increases linearly as the maximum tolerated approximation error decreases exponentially. 197 subdomains are required to keep the error below 18192 of the maximum amplitude. Quantum parallelism ensures that the computational complexity of estimating the amplitudes is independent from the number of subdomains.
IEEE Transactions on Quantum EngineeringDate of publication xxxx 00, 0000, date of current version xxxx 00, 0000.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.