The Induced Stresses in Tensile Element Joints (chain) were Studied in Two Phases: The first phase is to conduct a design study of the plate conveyor to determine the maximum tensile strength to which the joint is exposed. Then build two models, the first one represents a single joint with its components (wedge- copper ring- plate) with the basic dimensions and measurements of the chain. The second model was designed with new dimensions to suit the conveyor's working conditions. In the second phase, the three-dimension finite elements method was used to identify the stresses induced in the joint for both models and then compare the results to identify the model that shows the best performance. The result showed that increasing the external thickness of the joint by double in the proposed model up to the value of 6 mm was able to provide a homogeneous distribution of the main induced stress, which contributed to reducing the critical values of these stresses compared to the induced stresses in the model currently used. Consequently, increasing the external thickness of the joint has played an important role in reducing stresses, which leads to an increase the service life of the plate conveyor chain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.