Purpose of review-Subcutaneous implants are a promising technology to enable long-acting parenteral delivery of antiretroviral drugs (ARV) because they may be able to provide protective drugs concentrations for a year or longer following a single implant. The present review covers the current status of preclinical and clinical development of antiretroviral implants. Recent findings-Over the past three decades, subcutaneous implants have been widely used for long-acting hormonal contraception and the treatment of hormonally-driven malignancies. They are economical and scalable to manufacture, but require special procedures for insertion and removal. They are generally well tolerated, and can remain in place for up to five years. As longacting delivery of ARV would confer significant advantages, a few investigational implants are under development for the delivery of ARV; most remain at preclinical stages of development. Islatravir, a potent nucleoside analog reverse transcriptase translocation inhibitor that shows particular promise, has entered clinical testing in implant form. Investigational implants containing tenofovir alafenamide and nevirapine, and entecavir (for hepatitis B virus) have been developed and tested in animal models, with varying degrees of success. There is also burgeoning interest in bioerodable implant formulations of established ARVs. Summary-LARV implants are a promising new technology, but are in early stages of clinical development. Their potential advantages include more consistent and predictable drug release than that provided by intramuscular injections, the possibility of combining several partner drugs into one implant, and the fact that implants can be removed in the case of a desire to stop treatment or the development of adverse events.
The success of fecal microbiota transplant (FMT) in treating recurrent Clostridioides difficile infection has led to growing excitement about the potential of using transplanted human material as a therapy for a wide range of diseases and conditions related to microbial dysbiosis. We anticipate that the next frontier of microbiota transplantation will be vaginal microbiota transplant (VMT). The composition of the vaginal microbiota has broad impact on sexual and reproductive health. The vaginal microbiota in the “optimal” state are one of the simplest communities, dominated by one of only a few species of Lactobacillus. Diversity in the microbiota and the concomitant depletion of lactobacilli, a condition referred to as bacterial vaginosis (BV), is associated with a wide range of deleterious effects, including increased risk of acquiring sexually transmitted infections and increased likelihood of having a preterm birth. However, we have very few treatment options available, and none of them curative or restorative, for “resetting” the vaginal microbiota to a more protective state. In order to test the hypothesis that VMT may be a more effective treatment option, we must first determine how to screen donors to find those with minimal risk of pathogen transmission and “optimal” vaginal microbiota for transplant. Here, we describe a universal donor screening approach that was implemented in a small pilot study of 20 women. We further characterized key physicochemical properties of donor cervicovaginal secretions (CVS) and the corresponding composition of the vaginal microbiota to delineate criteria for inclusion/exclusion. We anticipate that the framework described here will help accelerate clinical studies of VMT.
Cabotegravir long-acting (LA) intramuscular (IM) injection is being investigated for HIV preexposure prophylaxis due to its potent antiretroviral activity and infrequent dosing requirement. A subset of healthy adult volunteers participating in a Phase I study assessing cabotegravir tissue pharmacokinetics underwent serial magnetic resonance imaging (MRI) to assess drug depot localization and kinetics following a single cabotegravir LA IM targeted injection. Methods: Eight participants (four men, four women) were administered cabotegravir LA 600 mg under ultrasonographic-guided injection targeting the gluteal muscles. MRI was performed to determine injection-site location in gluteal muscle (IM), subcutaneous (SC) adipose tissue and combined IM/SC compartments, and to quantify drug depot characteristics, including volume and surface area, on Days 1 (≤2 hours postinjection), 3 and 8. Linear regression analysis examined correlations between MRI-derived parameters and plasma cabotegravir exposure metrics, including maximum observed concentration (C max ) and partial area under the concentration-time curve (AUC) through Weeks 4 and 8. Results: Cabotegravir LA depot locations varied by participant and were identified in the IM compartment (n = 2), combined IM/SC compartments (n = 4), SC compartment (n = 1) and retroperitoneal cavity (n = 1). Although several MRI parameter and exposure metric correlations were determined, total depot surface area on Day 1 strongly correlated with plasma cabotegravir concentration at Days 3 and 8, C max and partial AUC through Weeks 4 and 8.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.