Apert syndrome, one of five craniosynostosis syndromes caused by allelic mutations of fibroblast growth-factor receptor 2 (FGFR2), is characterized by symmetrical bony syndactyly of the hands and feet. We have analyzed 260 unrelated patients, all but 2 of whom have missense mutations in exon 7, which affect a dipeptide in the linker region between the second and third immunoglobulin-like domains. Hence, the molecular mechanism of Apert syndrome is exquisitely specific. FGFR2 mutations in the remaining two patients are distinct in position and nature. Surprisingly, each patient harbors an Alu-element insertion of approximately 360 bp, in one case just upstream of exon 9 and in the other case within exon 9 itself. The insertions are likely to be pathological, because they have arisen de novo; in both cases this occurred on the paternal chromosome. FGFR2 is present in alternatively spliced isoforms characterized by either the IIIb (exon 8) or IIIc (exon 9) domains (keratinocyte growth-factor receptor [KGFR] and bacterially expressed kinase, respectively), which are differentially expressed in mouse limbs on embryonic day 13. Splicing of exon 9 was examined in RNA extracted from fibroblasts and keratinocytes from one patient with an Alu insertion and two patients with Pfeiffer syndrome who had nucleotide substitutions of the exon 9 acceptor splice site. Ectopic expression of KGFR in the fibroblast lines correlated with the severity of limb abnormalities. This provides the first genetic evidence that signaling through KGFR causes syndactyly in Apert syndrome.
Abstract-Specific mutations in GJA1, the gene encoding the gap junction protein connexin43 (Cx43), cause an autosomal dominant disorder called oculodentodigital dysplasia (ODDD). Here, we characterize the effects of 8 of these mutations on Cx43 function. Immunochemical studies have shown that most of the mutant proteins formed gap junction plaques at the sites of cell-cell apposition. However, 2 of the mutations (a codon duplication in the first extracellular loop, F52dup, and a missense mutation in the second extracellular loop, R202H, produced full-length connexins that failed to properly form gap junction plaques. Cx43 proteins containing ODDD mutations found in the N-terminus (Y17S), first transmembrane domain (G21R, A40V), second transmembrane domain (L90V), and cytoplasmic loop (I130T, K134E) do form gap junction plaques but show compromised channel function. L90V, I130T, and K134E demonstrated a significant decrease in junctional conductance relative to Cx43WT. Mutations Y17S, G21R, and A40V demonstrated a complete lack of functional electrical coupling even in the presence of significant plaque formation between paired cells. Heterologous channels formed by coexpression of Cx43WT and mutation R202H resulted in electrically functional gap junctions that were not permeable to Lucifer yellow. Therefore, the mutations found in ODDD not only cause phenotypic variability, but also result in various functional consequences. Overall, our data show an extensive range of molecular phenotypes, consistent with the pleiotropic nature of the clinical syndrome as a whole. (Circ Res. 2005;96:e83-e91.)
During the last few years, it has been demonstrated that some syndromic craniosynostosis and short-limb dwarfism syndromes, a heterogeneous group comprising of 11 distinct clinical entities, are caused by mutations in one of three fibroblast growth factor receptor genes (FGFR1, FGFR2, and FGFR3). The present review list all mutations described to date in these three genes and the phenotypes associated with them. In addition, the tentative phenotype-genotype correlation is discussed, including the most suggested causative mechanisms for these conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.