Autoimmunity to antigens of the central nervous system is usually considered detrimental. T cells specific to a central nervous system self antigen, such as myelin basic protein, can indeed induce experimental autoimmune encephalomyelitis, but such T cells may nevertheless appear in the blood of healthy individuals. We show here that autoimmune T cells specific to myelin basic protein can protect injured central nervous system neurons from secondary degeneration. After a partial crush injury of the optic nerve, rats injected with activated anti-myelin basic protein T cells retained approximately 300% more retinal ganglion cells with functionally intact axons than did rats injected with activated T cells specific for other antigens. Electrophysiological analysis confirmed this finding and suggested that the neuroprotection could result from a transient reduction in energy requirements owing to a transient reduction in nerve activity. These findings indicate that T-cell autoimmunity in the central nervous system, under certain circumstances, can exert a beneficial effect by protecting injured neurons from the spread of damage.
Postinjury recovery in most tissues requires an effective dialog with macrophages; however, in the mammalian central nervous system, this dialog may be restricted (possibly due to its immune-privileged status), which probably contributes to its regeneration failure. We circumvented this by implanting macrophages, pre-exposed ex vivo to peripheral nerve segments, into transected rat spinal cord. This stimulated tissue repair and partial recovery of motor function, manifested behaviorally by movement of hind limbs, plantar placement of the paws and weight support, and electrophysiologically by cortically evoked hind-limb muscle response. We substantiated these findings immunohistochemically by demonstrating continuity of labeled nerve fibers across the transected site, and by tracing descending fibers distally to it by anterograde labeling. In recovered rats, retransection of the cord above the primary transection site led to loss of recovery, indicating the involvement of long descending spinal tracts. Injection of macrophages into the site of injury is relatively non-invasive and, as the cells are autologous, it may be developed into a clinical therapy.
Partial injury to the spinal cord can propagate itself, sometimes leading to paralysis attributable to degeneration of initially undamaged neurons. We demonstrated recently that autoimmune T cells directed against the CNS antigen myelin basic protein (MBP) reduce degeneration after optic nerve crush injury in rats. Here we show that not only transfer of T cells but also active immunization with MBP promotes recovery from spinal cord injury. Anesthetized adult Lewis rats subjected to spinal cord contusion at T7 or T9, using the New York University impactor, were injected systemically with anti-MBP T cells at the time of contusion or 1 week later. Another group of rats was immunized, 1 week before contusion, with MBP emulsified in incomplete Freund's adjuvant (IFA). Functional recovery was assessed in a randomized, double-blinded manner, using the open-field behavioral test of Basso, Beattie, and Bresnahan. The functional outcome of contusion at T7 differed from that at T9 (2.9 Ϯ 0.4, n ϭ 25, compared with 8.3 Ϯ 0.4, n ϭ 12; p Ͻ 0.003). In both cases, a single T cell treatment resulted in significantly better recovery than that observed in control rats treated with T cells directed against the nonself antigen ovalbumin. Delayed treatment with T cells (1 week after contusion) resulted in significantly better recovery (7.0 Ϯ 1; n ϭ 6) than that observed in control rats treated with PBS (2.0 Ϯ 0.8; n ϭ 6; p Ͻ 0.01; nonparametric ANOVA). Rats immunized with MBP obtained a recovery score of 6.1 Ϯ 0.8 (n ϭ 6) compared with a score of 3.0 Ϯ 0.8 (n ϭ 5; p Ͻ 0.05) in control rats injected with PBS in IFA. Morphometric analysis, immunohistochemical staining, and diffusion anisotropy magnetic resonance imaging showed that the behavioral outcome was correlated with tissue preservation. The results suggest that T cell-mediated immune activity, achieved by either adoptive transfer or active immunization, enhances recovery from spinal cord injury by conferring effective neuroprotection. The autoimmune T cells, once reactivated at the lesion site through recognition of their specific antigen, are a potential source of various protective factors whose production is locally regulated.
Primary damage caused by injury to the CNS is often followed by delayed degeneration of initially spared neurons. Studies in our laboratory have shown that active or passive immunization with CNS myelin-associated self-antigens can reduce this secondary loss. Here we show, using four experimental paradigms in rodents, that CNS trauma spontaneously evokes a beneficial T cell-dependent immune response, which reduces neuronal loss.(1) Survival of retinal ganglion cells in rats was significantly higher when optic nerve injury was preceded by an unrelated CNS (spinal cord) injury. (2) Locomotor activity of rat hindlimbs (measured in an open field using a locomotor rating scale) after contusive injury of the spinal cord (T8) was significantly better (by three to four score grades) after passive transfer of myelin basic protein (MBP)-activated splenocytes derived from spinally injured rats than in untreated injured control rats or rats similarly treated with splenocytes from naive animals or with splenocytes from spinally injured rats activated ex vivo with ovalbumin or without any ex vivo activation. (3) Neuronal survival after optic nerve injury was 40% lower in adult rats devoid of mature T cells (caused by thymectomy at birth) than in normal rats. (4) Retinal ganglion cell survival after optic nerve injury was higher (119 Ϯ 3.7%) in transgenic mice overexpressing a T cell receptor (TcR) for MBP and lower (85 Ϯ 1.3%) in mice overexpressing a T cell receptor for the non-self antigen ovalbumin than in matched wild types. Taken together, the results imply that CNS injury evokes a T cell-dependent neuroprotective response.
We recently reported that the posttraumatic spread of degeneration in the damaged optic nerve can be attenuated by the adoptive transfer of autoimmune T cells specific to myelin basic protein. However, it would be desirable to obtain immune neuroprotection free of any possible autoimmune disease. In an attempt to obtain disease-free immune neuroprotection, we used the synthetic fouramino acid polymer copolymer 1 (Cop-1), which is known not to be encephalitogenic despite its cross-reactivity with myelin basic protein. We show here that active immunization with Cop-1 administered in adjuvant, as well as adoptive transfer of T cells reactive to Cop-1, can inhibit the progression of secondary degeneration after crush injury of the rat optic nerve. These results have implications for the treatment of optic neuropathies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.