Human social nature has shaped visual perception. A signature of the relationship between vision and sociality is a particular visual sensitivity to social entities such as faces and bodies. We asked whether human vision also exhibits a special sensitivity to spatial relations that reliably correlate with social relations. In general, interacting people are more often situated face-to-face than back-to-back. Using functional MRI and behavioral measures in female and male human participants, we show that visual sensitivity to social stimuli extends to images including two bodies facing toward (vs away from) each other. In particular, the inferior lateral occipital cortex, which is involved in visual-object perception, is organized such that the inferior portion encodes the number of bodies (one vs two) and the superior portion is selectively sensitive to the spatial relation between bodies (facing vs nonfacing). Moreover, functionally localized, body-selective visual cortex responded to facing bodies more strongly than identical, but nonfacing, bodies. In this area, multivariate pattern analysis revealed an accurate representation of body dyads with sharpening of the representation of single-body postures in facing dyads, which demonstrates an effect of visual context on the perceptual analysis of a body. Finally, the cost of body inversion (upside-down rotation) on body recognition, a behavioral signature of a specialized mechanism for body perception, was larger for facing versus nonfacing dyads. Thus, spatial relations between multiple bodies are encoded in regions for body perception and affect the way in which bodies are processed.
Detection and recognition of social interactions unfolding in the surroundings is as vital as detection and recognition of faces, bodies, and animate entities in general. We have demonstrated that the visual system is particularly sensitive to a configuration with two bodies facing each other as if interacting. In four experiments using backward masking on healthy adults, we investigated the properties of this dyadic visual representation. We measured the inversion effect (IE), the cost on recognition, of seeing bodies upside-down as opposed to upright, as an index of visual sensitivity: the greater the visual sensitivity, the greater the IE. The IE was increased for facing (vs. nonfacing) dyads, whether the head/face direction was visible or not, which implies that visual sensitivity concerns two bodies, not just two faces/heads. Moreover, the difference in IE for facing vs. nonfacing dyads disappeared when one body was replaced by another object. This implies selective sensitivity to a body facing another body, as opposed to a body facing anything. Finally, the IE was reduced when reciprocity was eliminated (one body faced another but the latter faced away). Thus, the visual system is sensitive selectively to dyadic configurations that approximate a prototypical social exchange with two bodies spatially close and mutually accessible to one another. These findings reveal visual configural representations encompassing multiple objects, which could provide fast and automatic parsing of complex relationships beyond individual faces or bodies.
Representing multiple agents and their mutual relations is a prerequisite to understand social events such as interactions. Using functional magnetic resonance imaging on human adults, we show that visual areas dedicated to body form and body motion perception contribute to processing social events, by holding the representation of multiple moving bodies and encoding the spatial relations between them. In particular, seeing animations of human bodies facing and moving toward (vs. away from) each other increased neural activity in the body-selective cortex [extrastriate body area (EBA)] and posterior superior temporal sulcus (pSTS) for biological motion perception. In those areas, representation of body postures and movements, as well as of the overall scene, was more accurate for facing body (vs. nonfacing body) stimuli. Effective connectivity analysis with dynamic causal modeling revealed increased coupling between EBA and pSTS during perception of facing body stimuli. The perceptual enhancement of multiple-body scenes featuring cues of interaction (i.e., face-to-face positioning, spatial proximity, and approaching signals) was supported by the participants’ better performance in a recognition task with facing body versus nonfacing body stimuli. Thus, visuospatial cues of interaction in multiple-person scenarios affect the perceptual representation of body and body motion and, by promoting functional integration, streamline the process from body perception to action representation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.