Cyclic azasulfuryl (As) peptide analogs of the urotensin II (UII, 1, H-Glu-Thr-Pro-Asp-c[Cys-Phe-Trp-Lys-Tyr-Cys]-Val-OH) fragment 4-11 were synthesized to explore the influences of backbone structure on biological activity. N-Aminosulfamides were inserted as surrogates of the Trp(7) and Lys(8) residues in the biologically relevant Trp-Lys-Tyr triad. A combination of solution- and solid-phase methods were used to prepare novel UII((4-11)) analogs 6-11 by routes featuring alkylation of azasulfuryl-glycine tripeptide precursors to install various side chains. The pharmacological profiles of derivatives 6-11 were tested in vitro using a competitive binding assay and ex vivo using a rat aortic ring bioassay. Although the analogs exhibited weak affinity for the urotensin II receptor (UT) without agonistic activity, azasulfuryl-UII((4-11)) derivatives 7-9 reduced up to 50% of the effects of UII and urotensin II-related peptide (URP) without affecting their potency.
Benzotriazepin-2-ones were designed to mimic the suggested bioactive γ-turn conformation of the Bip-Lys-Tyr tripeptide in Urocontrin ([Bip]URP), which modulates the urotensin II receptor (UT) and differentiates the effects of the endogenous ligands urotensin II (UII) and urotensin II-related peptide (URP). Twenty-six benzotriazepin-2-ones were synthesized by acylation of anthranilate-derived amino ketones with an aza-glycine equivalent, chemoselective nitrogen functionalization, and ring closure. Several mimics exhibited selective modulatory effects on hUII- and URP-associated vasoconstriction in an ex vivo rat aortic ring bioassay. The C p-hydroxyphenethenyl benzotriazepin-2-one 20g decreased hUII potency and efficacy without changing URP induced vasoconstriction. Its saturated phenethyl counterpart 23g decreased URP potency without influencing hUII-mediated contraction. To our knowledge, 20g and 23g represent the first achiral molecules that modulate selectively hUII and URP biological activities. Effectively synthesized, benzotriaepin-2-one turn mimics offer the potential to differentiate the respective roles, signaling pathways, and phenotypic outcomes of hUII and URP in the UT system.
Galectins are small soluble lectins that bind β-galactosides via their carbohydrate recognition domain (CRD). Their ability to dimerize is critical for the crosslinking of glycoprotein receptors and subsequent cellular signaling. This is particularly important in their immunomodulatory role via the induction of T-cell apoptosis. Because galectins play a central role in many pathologies, including cancer, they represent valuable therapeutic targets. At present, most inhibitors have been directed towards the CRD, a challenging task in terms of specificity given the high structural homology of the CRD among galectins. Such inhibitors are not effective at targeting CRD-independent functions of galectins. Here, we report a new class of galectin inhibitors that specifically binds human galectin-7 (hGal-7), disrupts the formation of homodimers, and inhibits the pro-apoptotic activity of hGal-7 on Jurkat T cells. In addition to representing a new means to achieve specificity when targeting galectins, such inhibitors provide a promising alternative to more conventional galectin inhibitors that target the CRD with soluble glycans or other small molecular weight allosteric inhibitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.