During most clinically relevant infections with cytopathic viruses, neutralizing antibodies are generated early, i.e., within the first week of infection. As early as 4 days after immunization of mice with vesicular stomatitis virus (VSV), a cytopathic virus closely related to rabies virus, hybridomas could be isolated that secreted virus-neutralizing IgGs. Such antibodies were devoid of somatic mutations, showed high binding avidities (approximately 10(9) M-1), and used V gene fragments predominantly belonging to the VHQ52 and VK19-28 families. In contrast, most secondary and hyperimmune response IgGs isolated 12 and 150 days after infection used several additional V gene combinations. These, which used the VHQ52/VK19-28 combination of early IgGs, were point mutated but showed only marginally enhanced binding avidities. Since all VHQ52/ VK19-28-positive IgGs bound to one subsite within the major antigenic site of VSV-G irrespective of the presence or absence of somatic point mutations, fine specificity diversification of secondary and hyperimmune responses was achieved by newly appearing V gene combinations.
Two gene-targeted immunoglobulin heavy chain transgenic mouse strains, TgH(KL25) and TgH(VI10), expressing neutralizing specificities for lymphocytic choriomeningitis virus and vesicular stomatitis virus, respectively, have been generated. Three days after lymphocytic choriomeningitis virus infection, TgH(KL25) mice showed a thymusindependent neutralizing IgM response followed by thymus-dependent (TD) IgG. In contrast, WT mice mounted only a TD IgG response around day 80. These observations indicated that not only structural properties of the virus but also immunological parameters such as the frequency of B cells were indicative for the induction of thymusindependent versus TD Ig responses. Naïve vesicular stomatitis virusspecific Ig heavy chain transgenic mice displayed greatly elevated natural antibody titers. However, despite these high naïve titers, de novo activation of naïve CD4 ؉ T and B cells was not blocked. Therefore, B cells giving rise to natural antibodies do not participate in virus-induced antibody responses.
Antibody responses against antibodies, such as rheumatoid factors, are found in several immunopathological diseases and may play a role in disease pathogenesis. Experience shows that they are usually difficult to induce experimentally. Antibodies specific for immunoglobulin constant regions (anti-allotypic) or for variable regions (anti-idiotypic) have been investigated in animal models; the latter have even been postulated to regulate antibody and T cell responses via network-like interactions. Why and how such anti-antibodies are induced during autoimmune diseases, has remained largely unclear. Because repetitively arranged epitopes in a paracrystalline structure of a viral envelope cross-link B cell receptors efficiently to induce a prompt T-independent IgM response, this study used immune complexes containing viruses or bacteria to evaluate the role of antigen pattern for induction of anti-antibody responses. We present evidence that antibodies bound to strictly ordered, but not to irregularly arranged, antigens dramatically enhance induction of anti-antibodies, already after a single immunization and without using adjuvants. The results indicate a novel link between anti-antibody responses and infectious agents, and suggest a similar role for repetitive self-antigens such as DNA or collagen involved in chronic immunopathological diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.