We have studied the dependence of the absorption edge and the refractive index of wurtzite AlxGa1−xN films on temperature and composition using transmission and photothermal deflection spectroscopy. The Al molar fraction of the AlxGa1−xN films grown by plasma induced molecular beam epitaxy was varied through the entire range of composition (0⩽x⩽1). We determined the absorption edges of AlxGa1−xN films and a bowing parameter of 1.3±0.2 eV. The refractive index in the photon energy range between 1 and 5.5 eV and temperatures between 7 and 295 K was deduced from the interference fringes. The static refractive index n(0) changed from 2.29 for GaN to 1.96 for AlN at room temperature. A variation of temperature from 295 to 7 K resulted in a decrease of refractive index (at photon energies close to the band gap) by 0.05±0.01 and in an energy shift of the absorption edge of about 64±5 meV independent of the Al content of the films. Using the Kramers–Kronig dispersion relation and an approximation for the dispersion coefficient for photon energies near the band gap, the refractive index could be described as a function of photon energy, Al content, and temperature.
Although the local resistivity of semiconducting silicon in its standard crystalline form can be changed by many orders of magnitude by doping with elements, superconductivity has so far never been achieved. Hybrid devices combining silicon's semiconducting properties and superconductivity have therefore remained largely underdeveloped. Here we report that superconductivity can be induced when boron is locally introduced into silicon at concentrations above its equilibrium solubility. For sufficiently high boron doping (typically 100 p.p.m.) silicon becomes metallic. We find that at a higher boron concentration of several per cent, achieved by gas immersion laser doping, silicon becomes superconducting. Electrical resistivity and magnetic susceptibility measurements show that boron-doped silicon (Si:B) made in this way is a superconductor below a transition temperature T(c) approximately 0.35 K, with a critical field of about 0.4 T. Ab initio calculations, corroborated by Raman measurements, strongly suggest that doping is substitutional. The calculated electron-phonon coupling strength is found to be consistent with a conventional phonon-mediated coupling mechanism. Our findings will facilitate the fabrication of new silicon-based superconducting nanostructures and mesoscopic devices with high-quality interfaces.
We report on the electronic and optical properties of boron-doped nanocrystalline diamond (NCD) thin films grown on quartz substrates by CH 4 /H 2 plasma chemical vapor deposition.Diamond thin films with a thickness below 350 nm and with boron concentration ranging from 10 17 cm -3 to 10 21 cm -3 have been investigated. UV Raman spectroscopy and AFM have been used to assess the quality and morphology of the diamond films. Hall effect measurements confirmed the expected p-type conductivity. At room temperature, the conductivity varies from 1.5x10 -8 Ω -1 cm -1 for a non-intentionally doped film up to 76 Ω -1 cm -1 for a heavily B-doped film. Increasing the doping level results in a higher carrier concentration while the mobility decreases from 1.8 cm 2 V -1 s -1 down to 0.2 cm 2 V -1 s -1 . For NCD films with low boron concentration, the conductivity strongly depends on temperature. However, the conductivity and the carrier concentration are no longer temperature-dependent for films with the highest boron doping, and the NCD films exhibit metallic properties. Highly doped films show superconducting properties with critical temperatures up to 2K. The critical boron concentration for the metal-insulator transition is in the range from 2x10 20 cm -3 up to 3x10 20 cm -3 . We discuss different transport mechanisms to explain the influence of the grain boundaries and boron doping on the electronic properties of NCD films. Valence band transport dominates at low boron concentration and high temperatures, 2 whereas hopping between boron acceptors is the dominant transport mechanism for boron doping concentration close to the Mott transition. Grain boundaries strongly reduce the mobility for low and very high doping levels. However, at intermediate doping levels where hopping transport is important, grain boundaries have a less pronounced effect on the mobility. The influence of boron and the effect of grain boundaries on the optoelectronic properties of the NCD films are examined using spectrally resolved photocurrent measurements and photothermal deflection spectroscopy. Major differences occur in the low energy range, between 0.5 -1.0 eV, where both Boron impurities and the sp 2 carbon phase in the grain boundaries govern the optical absorption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.