TRIP-assisted multiphase steels are newly developed steels exhibiting an improved balance of strength and ductility very well adapted for the automotive industry. In order to allow the retention of austenite, the steels studied up to now contained high levels of silicon incompatible with the industrial practice. This study shows how the combination of both a composite strengthening effect and the TRIP effect can improve the mechanical properties of a cold-rolled 0.16wt%C-1.3wt%Mn steel containing only 0.4 wt% of silicon. A complete characterisation of the bainite transformation and of the resulting microstructures, tensile properties and mechanical stability of retained austenite has allowed the determination of the factors responsible for the enhanced balance of strength and ductility of this steel well adapted for automotive applications.KEY WORDS: high strength steels; retained austenite; TRIP and multiphase steels; bainite transformation; mechanical properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.