When dealing with very large datasets of functional data, survey sampling approaches are useful in order to obtain estimators of simple functional quantities, without being obliged to store all the data. We propose here a Horvitz-Thompson estimator of the mean trajectory. In the context of a superpopulation framework, we prove under mild regularity conditions that we obtain uniformly consistent estimators of the mean function and of its variance function. With additional assumptions on the sampling design we state a functional Central Limit Theorem and deduce asymptotic confidence bands. Stratified sampling is studied in detail, and we also obtain a functional version of the usual optimal allocation rule considering a mean variance criterion. These techniques are illustrated by means of a test population of N = 18902 electricity meters for which we have individual electricity consumption measures every 30 minutes over one week. We show that stratification can substantially improve both the accuracy of the estimators and reduce the width of the global confidence bands compared to simple random sampling without replacement.
When collections of functional data are too large to be exhaustively observed, survey sampling techniques provide an effective way to estimate global quantities such as the population mean function. Assuming functional data are collected from a finite population according to a probabilistic sampling scheme, with the measurements being discrete in time and noisy, we propose to first smooth the sampled trajectories with local polynomials and then estimate the mean function with a Horvitz-Thompson estimator. Under mild conditions on the population size, observation times, regularity of the trajectories, sampling scheme, and smoothing bandwidth, we prove a Central Limit theorem in the space of continuous functions. We also establish the uniform consistency of a covariance function estimator and apply the former results to build confidence bands for the mean function. The bands attain nominal coverage and are obtained through Gaussian process simulations conditional on the estimated covariance function. To select the bandwidth, we propose a cross-validation method that accounts for the sampling weights. A simulation study assesses the performance of our approach and highlights the influence of the sampling scheme and bandwidth choice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.