Parkinson disease (PD) is characterized by dopaminergic neurodegeneration and intracellular inclusions of α-synuclein amyloid fibers, which are stable and difficult to dissolve. Whether inclusions are neuroprotective or pathological remains controversial, because prefibrillar oligomers may be more toxic than amyloid inclusions. Thus, whether therapies should target inclusions, preamyloid oligomers, or both is a critically important issue. In yeast, the protein-remodeling factor Hsp104 cooperates with Hsp70 and Hsp40 to dissolve and reactivate aggregated proteins. Metazoans, however, have no Hsp104 ortholog. Here we introduced Hsp104 into a rat PD model. Remarkably, Hsp104 reduced formation of phosphorylated α-synuclein inclusions and prevented nigrostriatal dopaminergic neurodegeneration induced by PD-linked α-synuclein (A30P). An in vitro assay employing pure proteins revealed that Hsp104 prevented fibrillization of α-synuclein and PD-linked variants (A30P, A53T, E46K). Hsp104 coupled ATP hydrolysis to the disassembly of preamyloid oligomers and amyloid fibers composed of α-synuclein. Furthermore, the mammalian Hsp70 and Hsp40 chaperones, Hsc70 and Hdj2, enhanced α-synuclein fiber disassembly by Hsp104. Hsp104 likely protects dopaminergic neurons by antagonizing toxic α-synuclein assemblies and might have therapeutic potential for PD and other neurodegenerative amyloidoses.
Trafficking of AMPA-type glutamate receptors (AMPAR) between endosomes and the postsynaptic plasma membrane of neurons plays a central role in the control of synaptic strength associated with learning and memory. The molecular mechanisms of its regulation remain poorly understood, however. Here we show by biochemical and atomic force microscopy analyses that NEEP21, a neuronal endosomal protein necessary for receptor recycling including AMPAR, is associated with the scaffolding protein GRIP1 and the AMPAR subunit GluR2. Moreover, the interaction between NEEP21 and GRIP1 is regulated by neuronal activity. Expression of a NEEP21 fragment containing the GRIP1-binding site decreases surface GluR2 levels and delays recycling of internalized GluR2, which accumulates in early endosomes and lysosomes. Infusion of this fragment into pyramidal neurons of hippocampal slices induces inward rectification of AMPAR-mediated synaptic responses, suggesting decreased GluR2 expression at synapses. These results indicate that NEEP21-GRIP1 binding is crucial for GluR2-AMPAR sorting through endosomes and their recruitment to the plasma membrane, providing a first molecular mechanism to differentially regulate AMPAR subunit cycling in internal compartments.
The insulin-like growth factor I (IGF-1)/Akt pathway plays a crucial role in Huntington's disease by phosphorylating the causative protein, polyQ-huntingtin, and abolishing its toxic properties [Humbert et al. (2002)Dev. Cell, 2, 831-837; Rangone et al. (2004)Eur. J. Neurosci., 19, 273-279]. Therefore, dysregulation of this pathway may be essential for disease progression. In the present report, we thus aimed to analyse the status of Akt in brain or in peripheral tissues in Huntington's disease. Using a genetic model of Huntington's disease in rat that reproduces neuronal dysfunction and death, we show a progressive alteration of Akt during neuronal dysfunction and prior neurodegeneration. By analysing a limited number of lymphoblasts and lymphocytes, we detected modifications of Akt in Huntington's disease patients confirming a dysregulation of Akt in the disease process. Finally, we demonstrate that during late stages of the disease, Akt is cleaved into an inactive form by caspase-3. These observations demonstrate a progressive but marked alteration of this pro-survival pathway in Huntington's disease, and further implicate it as a key transduction pathway regulating the toxicity of huntingtin.
Machado-Joseph disease (MJD) is a fatal, dominant neurodegenerative disorder. MJD results from polyglutamine repeat expansion in the MJD-1 gene, conferring a toxic gain of function to the ataxin-3 protein. In this study, we aimed at overexpressing ataxin-3 in the rat brain using lentiviral vectors (LV), to generate an in vivo MJD genetic model and, to study the disorder in defined brain regions: substantia nigra, an area affected in MJD, cortex and striatum, regions not previously reported to be affected in MJD. LV encoding mutant or wild-type human ataxin-3 was injected in the brain of adult rats and the animals were tested for behavioral deficits and neuropathological abnormalities. Striatal pathology was confirmed in transgenic mice and human tissue. In substantia nigra, unilateral overexpression of mutant ataxin-3 led to: apomorphine-induced turning behavior; formation of ubiquitinated ataxin-3 aggregates; alpha-synuclein immunoreactivity; and loss of dopaminergic markers (TH and VMAT2). No neuropathological changes were observed upon wild-type ataxin-3 overexpression. Mutant ataxin-3 expression in striatum and cortex, resulted in accumulation of misfolded ataxin-3, and within striatum, loss of neuronal markers. Striatal pathology was confirmed by observation in MJD transgenic mice of ataxin-3 aggregates and substantial reduction of DARPP-32 immunoreactivity and, in human striata, by ataxin-3 inclusions, immunoreactive for ubiquitin and alpha-synuclein. This study demonstrates the use of LV encoding mutant ataxin-3 to produce a model of MJD and brings evidence of striatal pathology, suggesting that this region may contribute to dystonia and chorea observed in some MJD patients and may represent a target for therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.