The temperature sensitivity of physiological processes and growth of tropical trees remains a key uncertainty in predicting how tropical forests will adjust to future climates. In particular, our knowledge regarding warming responses of photosynthesis, and its underlying biochemical mechanisms, is very limited. We grew seedlings of two tropical montane rainforest tree species, the early‐successional species Harungana montana and the late‐successional species Syzygium guineense, at three different sites along an elevation gradient, differing by 6.8℃ in daytime ambient air temperature. Their physiological and growth performance was investigated at each site. The optimum temperature of net photosynthesis (ToptA) did not significantly increase in warm‐grown trees in either species. Similarly, the thermal optima (ToptV and ToptJ) and activation energies (EaV and EaJ) of maximum Rubisco carboxylation capacity (Vcmax) and maximum electron transport rate (Jmax) were largely unaffected by warming. However, Vcmax, Jmax and foliar dark respiration (Rd) at 25℃ were significantly reduced by warming in both species, and this decline was partly associated with concomitant reduction in total leaf nitrogen content. The ratio of Jmax/Vcmax decreased with increasing leaf temperature for both species, but the ratio at 25℃ was constant across sites. Furthermore, in H. montana, stomatal conductance at 25℃ remained constant across the different temperature treatments, while in S. guineense it increased with warming. Total dry biomass increased with warming in H. montana but remained constant in S. guineense. The biomass allocated to roots, stem and leaves was not affected by warming in H. montana, whereas the biomass allocated to roots significantly increased in S. guineense. Overall, our findings show that in these two tropical montane rainforest tree species, the capacity to acclimate the thermal optimum of photosynthesis is limited while warming‐induced reductions in respiration and photosynthetic capacity rates are tightly coupled and linked to responses of leaf nitrogen.
• Tropical climates are getting warmer, with pronounced dry periods in large areas. The productivity and climate feedbacks of future tropical forests depend on the ability of trees to acclimate their physiological processes, such as leaf dark respiration (R d), to these new conditions. However, knowledge on this is currently limited due to data scarcity. • We studied the impact of growth temperature on R d and its dependency on net photosynthesis (A n), leaf nitrogen (N) and phosphorus (P) contents, and leaf mass per unit area (LMA) in 16 early-(ES) and late-successional (LS) tropical tree species in multi-species plantations along an elevation gradient. Moreover, we explored the effect of drought on R d in one ES and one LS species. • Leaf R d at 20 °C decreased at warmer sites, regardless if it was expressed per unit leaf area, mass, N or P. This acclimation resulted in 8% and 28% decrease in R d at prevailing nighttime temperatures in trees at the intermediate and warmest sites, respectively. Moreover, drought reduced R d , particularly in the ES species and at the coolest site. • Thermal acclimation of R d is complete or over-compensatory and independent of changes in leaf nutrients or LMA in African tropical trees.
Abstract. As a result of different types of disturbance, forests are a mixture of stands at different stages of ecological succession. Successional stage is likely to influence forest productivity and carbon storage, linking the degree of forest disturbance to the global carbon cycle and climate. Although tropical montane forests are an important part of tropical forest ecosystems (ca. 8 %, elevation > 1000 m a.s.l.), there are still significant knowledge gaps regarding the carbon dynamics and stocks of these forests, and how these differ between early (ES) and late successional (LS) stages. This study examines the carbon (C) stock, relative growth rate (RGR) and net primary production (NPP) of ES and LS forest stands in an Afromontane tropical rainforest using data from inventories of quantitatively important ecosystem compartments in fifteen 0.5 ha plots in Nyungwe National Park in Rwanda. The total C stock was 35 % larger in LS compared to ES plots due to significantly larger above-ground biomass (AGB; 185 and 76 Mg C ha−1 in LS and ES plots), while the soil and root C stock (down to 45 cm depth in the mineral soil) did not significantly differ between the two successional stages (178 and 204 Mg C ha−1 in LS and ES plots). The main reasons for the difference in AGB were that ES trees had significantly lower stature and wood density compared to LS trees. However, ES and LS stands had similar total NPP (canopy, wood and roots of all plots ∼ 9.4 Mg C ha−1) due to counterbalancing effects of differences in AGB (higher in LS stands) and RGR (higher in ES stands). The AGB in the LS plots was considerably higher than the average value reported for old-growth tropical montane forest of south-east Asia and Central and South America at similar elevations and temperatures, and of the same magnitude as in tropical lowland forest of these regions. The results of this study highlight the importance of accounting for disturbance regimes and differences in wood density and allometry of tree species dominating at different successional stages in an attempt to quantify the C stock and sink strength of tropical montane forests and how they may differ among continents.
Tropical forests store 40-50% of terrestrial vegetation carbon 1 . Spatial variations in aboveground live tree biomass carbon (AGC) stocks remain poorly understood, in particular in tropical montane forests 2 . Owing to climatic and soil changes with increasing elevation 3 , AGC stocks are lower in tropical montane compared to lowland forests 2 . Here we assemble and analyse a dataset of structurally intact old-growth forests (AfriMont) spanning 44 montane sites in 12 African countries. We find that montane sites in the AfriMont plot network have a mean AGC-stock of 149.4 Mg C ha -1 (95% CI 137.1-164.2), comparable to lowland forests in the African Tropical Rainforest Observation Network 4 and about 70 per cent and 32 per cent higher than averages from plot networks in montane 2,5,6 and lowland 7 forests in the Neotropics, respectively. Notably, our results are two-thirds higher than the IPCC default values for these forests in Africa 8 . We find that the low stem density and high abundance of large trees of African lowland forests 4 is mirrored in the montane forests sampled. This carbon store is endangered: we estimate that 0.8 million ha of old-growth African montane forest have been lost since 2000. We provide country-specific montane forest AGC stock estimates modelled from our plot network to help guide forest conservation and reforestation interventions. Our findings highlight the need for conserving these biodiverse 9,10 and carbon-rich ecosystems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.