A quality control (QC) process has been developed and applied to an observational database of surface wind speed and wind direction in northeastern North America. The database combines data from three datasets of different initial quality, including a total of 526 land stations and buoys distributed over the provinces of eastern Canada and five adjacent northeastern U.S. states. The data span from 1953 to 2010. The first part of the QC deals with data management issues and is developed in a companion paper. Part II, presented herein, is focused on the detection of measurement errors and deals with low-variability errors, like the occurrence of unrealistically long calms, and high-variability problems, like rapid changes in wind speed; some types of biases in wind speed and wind direction are also considered. About 0.5% (0.16%) of wind speed (wind direction) records have been flagged. Additionally, 15.87% (1.73%) of wind speed (wind direction) data have been corrected. The most pervasive error type in terms of affected sites and erased data corresponds to unrealistic low wind speeds (89% of sites affected with 0.35% records removed). The amount of detected and corrected/removed records in Part II (~9%) is approximately two orders of magnitude higher than that of Part I. Both management and measurement errors are shown to have a discernible impact on the statistics of the database.
A quality control (QC) process has been developed and implemented on an observational database of surface wind speed and direction in northeastern North America. The database combines data from 526 land stations and buoys spread across eastern Canada and five adjacent northeastern U.S. states. It combines the observations of three different institutions spanning from 1953 to 2010. The quality of these initial data varies among source institutions. The current QC process is divided into two parts. Part I, described herein, is focused on issues related to data management: issues stemming from data transcription and collection; differences in measurement units and recording times; detection of sequences of duplicated data; unification of calm and true north criteria for wind direction; and detection of physically unrealistic data measurements. As a result, around ;0.1% of wind speed and wind direction records have been identified as erroneous and deleted. The most widespread error type is related to duplications within the same station, but the error type that entails more erroneous data belongs to duplications among different sites. Additionally, the process of data compilation and standardization has had an impact on more than 90% of the records. A companion paper (Part II) deals with a group of errors that are conceptually different, and is focused on detecting measurement errors that relate to temporal consistency and biases in wind speed and direction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.