OBJECTIVE-Calcium-permeable cation channel TRPV2 is expressed in pancreatic -cells. We investigated regulation and function of TRPV2 in -cells. RESULTS-In MIN6 cells, TRPV2 was observed mainly in cytoplasm in an unstimulated condition. Addition of exogenous insulin induced translocation and insertion of TRPV2 to the plasma membrane. Consistent with these observations, insulin increased calcium entry, which was inhibited by tranilast, an inhibitor of TRPV2, or by knockdown of TRPV2 using shRNA. A high concentration of glucose also induced translocation of TRPV2, which was blocked by nefedipine, diazoxide, and somatostatin, agents blocking glucose-induced insulin secretion. Knockdown of the insulin receptor attenuated insulin-induced translocation of TRPV2. Similarly, the effect of insulin on TRPV2 translocation was not observed in a -cell line derived from islets obtained from a -cell-specific insulin receptor knockout mouse. Knockdown of TRPV2 or addition of tranilast significantly inhibited insulin secretion induced by a high concentration of glucose. Likewise, cell growth induced by serum and glucose was inhibited by tranilast or by knockdown of TRPV2. Finally, insulininduced translocation of TRPV2 was observed in cultured mouse -cells, and knockdown of TRPV2 reduced insulin secretion induced by glucose. RESEARCH DESIGN AND METHODS-Translocation CONCLUSIONS-TRPV2 is regulated by insulin and is involved
Because the significance of P-glycoprotein in the in-vivo secretion of beta-blockers in intestinal epithelial cells is unclear, the secretory mechanism for beta-blockers and other drugs has been evaluated. Uptake of the beta-blockers acebutolol, celiprolol, nadolol and timolol, and the antiarrhythmic agent, quinidine by the multidrug-resistant leukaemic cell line variant K562/ADM was significantly lower than that by drug-sensitive K562 cells, suggesting that these beta-blockers are transported by P-glycoprotein out of cells. The reduced uptake of acebutolol by the drug-resistant K562/ADM cells was reversed by treating the cells with anti-P-glycoprotein monoclonal antibody, MRK16, whereas no such alteration in uptake was observed for drug-sensitive K562 cells. Acebutolol uptake by K562/ADM cells was, moreover, markedly enhanced, in a concentration-dependent manner, in the presence of the specific P-glycoprotein inhibitors, MS-209 and cyclosporin. Caco-2 cells were used for evaluation of the role of P-glycoprotein in intestinal permeability to drugs in-vitro. Basolateral-to-apical transport of acebutolol was twice that in the reverse direction. A similar polarized flux was also observed in the transport of vinblastine, but not in that of acetamide or mannitol. When in-vivo intestinal absorption was evaluated by the rat jejunal loop method, with simultaneous intravenous administration of a P-glycoprotein inhibitor, cyclosporin, intestinal absorption of both acebutolol and vinblastine increased 2.6- and 2.2-fold, respectively, but no such enhancement was observed in the absorption of acetamide. The effect of cyclosporin on the intestinal absorption of several drugs was further examined, and the extent of the contribution of P-glycoprotein as an absorption barrier to those drugs was evaluated. ATP depletion by occlusion of the superior mesenteric artery resulted in a clear increase in epithelial permeability to vinblastine, but not to 3-O-methylglucose or acetamide, indicating that vinblastine is secreted by ATP-dependent P-glycoprotein into the lumen. These findings demonstrate that P-glycoprotein plays a role as an absorption barrier by transporting several drugs from intestinal cells into the lumen.
The aim of this study is to assess whether fucoidan modulates the expression of chemokine ligand 12 (CXCL12)/chemokine receptor 4 (CXCR4) and exerts antitumor activity toward Huh7 hepatoma cells. According to 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays, fucoidan inhibited the growth of Huh7 cells and HepG2 cells in a dose-dependent manner, with a 50% inhibition of cell growth (IC50) of 2.0 and 4.0 mg/ml, respectively. alpha-fetoprotein levels in medium collected from fucoidan-treated cells were significantly decreased in Huh7 cells but not in HepG2 cells. Western blotting revealed that the amount of alpha-fetoprotein was decreased by 1.0 mg/ml of fucoidan in Huh7 cells, whereas it was unchanged in HepG2 cells. In Huh7 cells, CXCL12 mRNA expression was significantly downregulated by 1.0 mg/ml of fucoidan, whereas CXCR4 mRNA expression was unchanged by fucoidan. CXCL12 and CXCR4 mRNA were barely expressed in HepG2 cells. In addition, 1.0 mg/ml of fucoidan mildly arrested the cell cycle and induced apoptosis in Huh7 cells. The findings suggest that fucoidan exhibits antitumor activity toward Huh7 cells through the downregulation of CXCL12 expression.
Abstract. The present study was conducted to establish a method to induce differentiation of bone marrow (MB)-derived mesenchymal cells into insulin-producing cells. When mouse BM-derived mesenchymal cells were cultured for 60 days in medium containing 10% fetal calf serum and 25 mM glucose, they expressed insulin. Addition of activin A and betacellulin (BTC) accelerated differentiation, and immunoreactive insulin was detected 14 days after the treatment. Insulin-containing secretory granules were observed in differentiated cells by electron microscopy. Treatment of BMderived mesenchymal cells with conophylline (CnP) and BTC-delta4 further accelerated differentiation, and mRNA for insulin was detected 5 to 7 days after the treatment. Mesencymal cells treated with CnP and BTC-delta4 responded to a high concentration of glucose and secreted mature insulin. When these cells were transplanted into streptozotocin-treated mice, they markedly reduced the plasma glucose concentration, and the effect continued for at least 4 weeks. These results indicate an efficacy of the combination of CnP and BTC-delta4 in inducing differentiation of BM-derived mesenchymal cells into insulin-producing cells.
The patient was an 86-year-old man who was admitted with obstructive jaundice. Computed tomography revealed a tumor in the hilar choledochus with peripheral hepatic duct dilatation. Endoscopic cholangiography (ERC) demonstrated the defect in the choledochus. Brushing cytology during ERC showed Orange-G-philic keratinized atypical cells, which led to a diagnosis of squamous cell carcinoma. Chemotherapy with tegafur-gimeracil-oteracil potassium was ineffective and was discontinued due to adverse effects. The patient died 5 months after the diagnosis and autopsy revealed tubular adenocarcinoma of the hilar bile duct with squamous cell carcinoma component. Progression of the disease might influence the distribution of adenosquamous carcinoma. The clinicopathological sequence of adenosquamous carcinoma of the choledochus was documented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.