Aging is often perceived as a degenerative process caused by random accrual of cellular damage over time. In spite of this, age can be accurately estimated by epigenetic clocks based on DNA methylation profiles from almost any tissue of the body. Since such pan-tissue epigenetic clocks have been successfully developed for several different species, it is difficult to ignore the likelihood that a defined and shared mechanism instead, underlies the aging process. To address this, we generated 10,000 methylation arrays, each profiling up to 37,000 cytosines in highly-conserved stretches of DNA, from over 59 tissue-types derived from 128 mammalian species. From these, we identified and characterized specific cytosines, whose methylation levels change with age across mammalian species. Genes associated with these cytosines are greatly enriched in mammalian developmental processes and implicated in age-associated diseases. From the methylation profiles of these age-related cytosines, we successfully constructed three highly accurate universal mammalian clocks for eutherians, and one universal clock for marsupials. The universal clocks for eutherians are similarly accurate for estimating ages (r>0.96) of any mammalian species and tissue with a single mathematical formula. Collectively, these new observations support the notion that aging is indeed evolutionarily conserved and coupled to developmental processes across all mammalian species - a notion that was long-debated without the benefit of this new and compelling evidence.
The reproductive endocrinology of the bottlenose dolphin, Tursiops truncatus, was characterized to facilitate the development of artificial insemination using cryopreserved spermatozoa. Specific objectives were: (i) to determine the excretory dynamics of urinary luteinizing hormone (LH) and ovarian steroid metabolites during the estrous cycle; (ii) to evaluate the effect of an exogenously administered synthetic progesterone analog (altrenogest) on reproductive hormone excretion; (iii) to correlate follicular growth and ovulation (as determined by transabdominal ultrasound) to urinary LH and ovarian steroid metabolites; (iv) examine the in vivo fertilisation capacity of cryopreserved semen, and (v) to develop an intrauterine insemination technique. Based on urinary endocrine monitoring of natural estrous cycles (2 consecutive cycles) and nine post altrenogest cycles in ten females, estrous cycles were found to be 36 days long and comprised of an 8 day and 19 day follicular and luteal phase, respectively. Peak estrogen conjugates (EC; 5.4 6 3.8 ng/mg creatinine (Cr)) occurred 8 h prior to the LH surge (70.9 6 115.7 ng/mg Cr). The time of ovulation, as determined by ultrasonography, occurred 32.1 6 8.9 h and 24.3 6 7.0 h after the onset of the LH surge and LH peak, respectively. Mean preovulatory follicular diameter and circumference were 2.1 6 0.5 cm and 6.5 6 1.5 cm, respectively. Of the 27 estrous synchronisation attempts, 13 resulted in an ovulatory cycle, with ovulation occurring 21 days post-altrenogest treatment. Intrauterine (4 of 5) and intracornual (1 of 3) inseminations conducted across eight estrous cycles resulted in five pregnancies (63%), one pregnancy resulted from the use of liquid stored semen, whereas four were achieved using cryopreserved semen. These data provide new information on female bottlenose dolphin reproductive physiology, and demonstrate that the combination of endocrine monitoring and serial ultrasonography contributed to successful AI using liquid-stored and cryopreserved semen.
The development of a precise blood or skin tissue DNA Epigenetic Aging Clock for Odontocete (OEAC) would solve current age estimation inaccuracies for wild odontocetes. Therefore, we determined genome-wide DNA methylation profiles using a custom array (HorvathMammalMethyl40) across skin and blood samples (n = 446) from known age animals representing nine odontocete species within 4 phylogenetic families to identify age associated CG dinucleotides (CpGs). The top CpGs were used to create a cross-validated OEAC clock which was highly correlated for individuals (r = 0.94) and for unique species (median r = 0.93). Finally, we applied the OEAC for estimating the age and sex of 22 wild Norwegian killer whales. DNA methylation patterns of age associated CpGs are highly conserved across odontocetes. These similarities allowed us to develop an odontocete epigenetic aging clock (OEAC) which can be used for species conservation efforts by provide a mechanism for estimating the age of free ranging odontocetes from either blood or skin samples.
The reproductive physiology of the Pacific white-sided dolphin, Lagenorhynchus obliquidens, was characterized to facilitate the development of artificial insemination (AI) using cryopreserved spermatozoa. Specific objectives were to: 1) describe reproductive seasonality of the Pacific white sided dolphins; 2) describe urinary LH and ovarian steroid metabolites during the estrous cycle; 3) correlate LH and ovarian steroidal metabolite patterns to ultrasound-monitored follicular growth and ovulation; and 4) assess the efficacy of synchronizing estrus, sperm collection/cryopreservation, and intrauterine insemination. Ovulations (64%, nZ37) and conceptions (83%, nZ18) occurred from August to October. Peak mean serum testosterone (24 ng/ml), cross-sectional testicular area (41.6 cm 2 ), and sperm concentration (144.3!10 7 sperm/ml) occurred in July, August, and September respectively. Spermatozoa were only found in ejaculates from July to October. Estrous cycles (nZ22) were 31 d long and were comprised of a 10 d follicular and 21 d luteal phase. Ovulation occurred 31.2 h after the onset of the LH surge and 19.3 h after the LH peak. Follicular diameter and circumference within 12 h of ovulation were 1.52 and 4.66 cm respectively. Estrus synchronization attempts with altrenogest resulted in 17 (22%) ovulatory cycles with ovulation occurring 21 d post-altrenogest. Ten AI attempts using cryopreserved semen resulted in five pregnancies (50%). The mean gestation length was 356 days (range 348-367). These data provide new information on the Pacific whitesided dolphin's reproductive physiology and collectively enabled the first application of AI in this species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.