Dermatofibromas have an increased brownish color due to hyperpigmentation of the overlying skin. To determine paracrine factors involved in the epidermal hyperpigmentation, we have studied the expression of cytokines in lesional and nonlesional dermatofibroma skin at the transcriptional and protein levels using reverse transcription polymerase chain reaction and immunohistochemistry, respectively. The number of tyrosinase immuno-positive melanocytes in the pigmented dermatofibroma epidermis is significantly increased (2-fold) compared with nonlesional normal epidermis. Reverse transcription polymerase chain reaction analysis of mRNAs encoding stem cell factor and hepatocyte growth factor demonstrated that there is an accentuated expression of stem cell factor and hepatocyte growth factor transcripts in the lesional dermatofibroma dermis compared with the nonlesional dermis, although there is no difference in their expression between the lesional and nonlesional epidermis. In contrast, mRNA transcripts encoding endothelin-1, growth-related oncogene alpha, and basic fibroblast growth factor are not increased in lesional epidermis or in dermis relative to nonlesional skin. In parallel, immunohistochemical analysis using antibodies to stem cell factor and hepatocyte growth factor reveal a marked immunostaining in growing fibroblastic tumor cells in the dermatofibroma lesions with no detectable staining in the nonlesional dermis, but there is no difference in their immunostaining between the lesional and nonlesional epidermis. Interestingly, and consistent with the increased expression of stem cell factor in lesional dermatofibroma dermis, toluidine blue staining in the dermis revealed a 5-fold increase in the number of mast cells, an indication of their longevity or accumulation induced by stem cell factor. These findings suggest an important role of fibroblastic tumor cell-derived stem cell factor in the mechanism involved in the hyperpigmentation of the dermatofibroma epidermis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.