Summary
Objectives
To evaluate the biomechanical performance of the Femoral Neck System (FNS) versus the Hansson Pin System (Hansson Pins) with two parallel pins in a Pauwels II femoral neck fracture model with posterior comminution.
Methods
Forty-degree Pauwels II femoral neck fractures AO 31-B2.1 with 15° posterior wedge were simulated in fourteen paired fresh-frozen human femora, followed by instrumentation with either FNS or Hansson Pins in pair-matched fashion. Implant positioning was quantified by measuring shortest implant distances to inferior cortex (DI) and posterior cortex (DP) on anteroposterior and axial X-rays, respectively. Biomechanical testing was performed in 20° adduction and 10° flexion with simulated iliopsoas muscle tension. Progressively increasing cyclic loading was applied until construct failure. Interfragmentary femoral head-to-shaft movements were measured with optical motion tracking.
Results
Cycles to 10° varus deformation were significantly higher for FNS (23007 ± 5496) versus Hansson Pins (17289 ± 4686), P = 0.027. Cycles to 10° femoral head dorsal tilting (FNS: 12765 ± 3425; Hansson Pins: 13357 ± 6104) and cycles to 10° rotation around the femoral neck axis (FNS: 24453 ± 5073; Hansson Pins: 20185 ± 11065) were comparable between the implants, P ≥ 0.314. For Hansson Pins, the outcomes for varus deformation and dorsal tilting correlated significantly with DI and DP, respectively (P ≤ 0.047), whereas these correlations were not significant for FNS (P ≥ 0.310).
Conclusions
From a biomechanical perspective, by providing superior resistance against varus deformation and performing in a less sensitive way to variations in implant placement, the angular stable Femoral Neck System can be considered as a valid alternative to the Hansson Pin System for the treatment of Pauwels II femoral neck fractures.
Level of evidence
therapeutic, Level V.
The Translational potential of this article
The translational potential of this article is to compare the performance of the FNS with Hansson Pins in a AO 31-B2.1 fracture model featuring a 15 posterior wedge to show the implants behavior concerning the dorsal tilting tendency.
Purpose: Classification of femoral trochanteric fractures is usually based on plain X-ray findings using the Evans, Jensen, or AO/OTA classification. However, complications such as nonunion and cut out of the lag screw or blade are seen even in stable fracture. This may be due to the difficulty of exact diagnosis of fracture pattern in plain X-ray. Computed tomography (CT) may provide more information about the fracture pattern, but such data are scarce. In the present study, it was performed to propose a classification system for femoral trochanteric fractures using threedimensional CT (3D-CT) and investigate the relationship between this classification and conventional plain X-ray classification. Methods: Using three-dimensional (3D)-CT, fractures were classified as two, three, or four parts using combinations of the head, greater trochanter, lesser trochanter, and shaft. We identified five subgroups of three-part fractures according to the fracture pattern involving the greater and lesser trochanters. In total, 239 femoral trochanteric fractures (45 men, 194 women; average age, 84.4 years) treated in four hospitals were classified using our 3D-CT classification. The relationship between this 3D-CT classification and the AO/OTA, Evans, and Jensen X-ray classifications was investigated. Results: In the 3D-CT classification, many fractures exhibited a large oblique fragment of the greater trochanter including the lesser trochanter. This fracture type was recognized as unstable in the 3D-CT classification but was often classified as stable in each X-ray classification. Conclusions: It is difficult to evaluate fracture patterns involving the greater trochanter, especially large oblique fragments including the lesser trochanter, using plain X-rays. The 3D-CT shows the fracture line very clearly, making it easy to classify the fracture pattern.
The rate of patients with distal radial fractures who underwent BMD examination was low, suggesting that appropriate treatment for osteoporosis by trauma surgeons is not performed at present.
Patients in the deteriorated results group showed a higher incidence of preoperative developmental and/or dynamic canal stenosis at the adjacent disc level than those in the the good results group. These results indicate that patients with preoperative developmental canal stenosis are not suitable candidates for anterior cervical fusion. When dynamic canal stenosis is found below or above the level of fusion, simultaneous fusion is recommended to avoid deterioration of the myelopathy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.