Ultrasound elastography is a relatively new diagnostic technique for measuring the elasticity (hardness) of tissue. Eleven years have passed since the debut of elastography. Various elastography devices are currently being marketed by manufacturers under different names. Pancreatic elastography can be used not only with transabdominal ultrasonography but also with endoscopic ultrasonography, but some types of elastography are difficult to perform for the pancreas. These guidelines aim to classify the various types of elastography into two major categories depending on the differences in the physical quantity (strain, shear wave), and to present the evidence for pancreatic elastography and how to use pancreatic elastography in the present day. But the number of reports on ultrasound elastography for the pancreas is still small, and there are no reports on some elastography devices for the pancreas. Therefore, these guidelines do not recommend methods of imaging and analysis by elastography device.
Ultrasonography has been used for breast cancer screening in Japan. Screening using a conventional hand-held probe is operator dependent and thus it is possible that some areas of the breast may not be scanned. To overcome such problems, a mechanical whole breast ultrasound (US) scanner has been proposed and developed for screening purposes. However, another issue is that radiologists might tire while interpreting all images in a large-volume screening; this increases the likelihood that masses may remain undetected. Therefore, the aim of this study is to develop a fully automatic scheme for the detection of masses in whole breast US images in order to assist the interpretations of radiologists and potentially improve the screening accuracy. The authors database comprised 109 whole breast US imagoes, which include 36 masses (16 malignant masses, 5 fibroadenomas, and 15 cysts). A whole breast US image with 84 slice images (interval between two slice images: 2 mm) was obtained by the ASU-1004 US scanner (ALOKA Co., Ltd., Japan). The feature based on the edge directions in each slice and a method for subtracting between the slice images were used for the detection of masses in the authors proposed scheme. The Canny edge detector was applied to detect edges in US images; these edges were classified as near-vertical edges or near-horizontal edges using a morphological method. The positions of mass candidates were located using the near-vertical edges as a cue. Then, the located positions were segmented by the watershed algorithm and mass candidate regions were detected using the segmented regions and the low-density regions extracted by the slice subtraction method. For the removal of false positives (FPs), rule-based schemes and a quadratic discriminant analysis were applied for the distribution between masses and FPs. As a result, the sensitivity of the authors scheme for the detection of masses was 80.6% (29/36) with 3.8 FPs per whole breast image. The authors scheme for a computer-aided detection may be useful in improving the screening performance and efficiency.
Ten years have passed since the first elastography application: Real-time Tissue Elastography™. Now there are several elastography applications in existence. The Quality Control Research Team of The Japan Association of Breast and Thyroid Sonology (JABTS) and the Breast Elasticity Imaging Terminology and Diagnostic Criteria Subcommittee, Terminology and Diagnostic Criteria Committee of the Japan Society of Ultrasonics in Medicine (JSUM) have advocated breast elastography classifications for exact knowledge and good clinical use. We suggest two types of classifications: the technical classification and the classification for interpretation. The technical classification has been created to use vibration energy and to make images, and also shows how to obtain a good elastic image. The classification for interpretation has been prepared on the basis of interpretation of evidence in this decade. Finally, we describe the character and specificity of each vender equipment. We expect the present guidelines to be useful for many physicians and examiners throughout the world.
CEUS using Sonazoid was confirmed to be superior to unenhanced ultrasound for the differential diagnosis (benign vs malignant) of focal breast lesions in terms of diagnostic accuracy with no serious adverse reactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.