The Dementia with Lewy Bodies (DLB) Consortium has refined its recommendations about the clinical and pathologic diagnosis of DLB, updating the previous report, which has been in widespread use for the last decade. The revised DLB consensus criteria now distinguish clearly between clinical features and diagnostic biomarkers, and give guidance about optimal methods to establish and interpret these. Substantial new information has been incorporated about previously reported aspects of DLB, with increased diagnostic weighting given to REM sleep behavior disorder and 123iodine-metaiodobenzylguanidine (MIBG) myocardial scintigraphy. The diagnostic role of other neuroimaging, electrophysiologic, and laboratory investigations is also described. Minor modifications to pathologic methods and criteria are recommended to take account of Alzheimer disease neuropathologic change, to add previously omitted Lewy-related pathology categories, and to include assessments for substantia nigra neuronal loss. Recommendations about clinical management are largely based upon expert opinion since randomized controlled trials in DLB are few. Substantial progress has been made since the previous report in the detection and recognition of DLB as a common and important clinical disorder. During that period it has been incorporated into DSM-5, as major neurocognitive disorder with Lewy bodies. There remains a pressing need to understand the underlying neurobiology and pathophysiology of DLB, to develop and deliver clinical trials with both symptomatic and disease-modifying agents, and to help patients and carers worldwide to inform themselves about the disease, its prognosis, best available treatments, ongoing research, and how to get adequate support.
Redox status changes exert critical impacts on necrotic/apoptotic and normal cellular processes. We report here a widely expressed Ca2+-permeable cation channel, LTRPC2, activated by micromolar levels of H2O2 and agents that produce reactive oxygen/nitrogen species. This sensitivity of LTRPC2 to redox state modifiers was attributable to an agonistic binding of nicotinamide adenine dinucleotide (beta-NAD+) to the MutT motif. Arachidonic acid and Ca2+ were important positive regulators for LTRPC2. Heterologous LTRPC2 expression conferred susceptibility to death on HEK cells. Antisense oligonucleotide experiments revealed physiological involvement of "native" LTRPC2 in H2O2- and TNFalpha-induced Ca2+ influx and cell death. Thus, LTRPC2 represents an important intrinsic mechanism that mediates Ca2+ and Na+ overload in response to disturbance of redox state in cell death.
Among the various disorders manifesting dementia, gait disturbance, and urinary incontinence in the elderly population, idiopathic normal pressure hydrocephalus (iNPH) is becoming of great importance. After the publication of the first edition of the Guidelines for Management of Idiopathic Normal Pressure Hydrocephalus in 2004 (the English version was published in 2008), clinical awareness of iNPH has risen dramatically, and the number of shunt surgeries has increased rapidly across Japan. Clinical and basic research on iNPH has increased significantly, and more high-level evidence has since been generated. The second edition of the Japanese Guidelines was thus published in July 2011, to provide a series of timely evidence-based recommendations related to iNPH. The revision of the Guidelines has been undertaken by a multidisciplinary expert working group of the Japanese Society of Normal Pressure Hydrocephalus in conjunction with the Japanese Ministry of Health, Labour and Welfare research project on``Studies on the epidemiology, pathophysiology, and treatment of normal pressure hydrocephalus.'' This English version of the second edition of the Guidelines was made to share these ideas with the international community and to promote international research on iNPH.
Background and Purpose: Microvascular perfusion defects may accompany sustained occlusion and subsequent reperfusion of the middle cerebral artery; however, the nature of such "no-reflow" defects remains unclear.Methods: In the absence of antithrombotic pretreatment, we documented lenticulostriatal microvascular flow integrity following 3-hour middle cerebral artery occlusion and 1-hour reperfusion in a baboon occlusion/reperfusion model by two methods identifying 1) microvascular occlusion and 2) microvascular patency.Results: Microvascular "no-reflow" involved capillaries (vessels of 4.0-7.5 /un diameter) of the lenticulostriatal territory. Capillary reflow included 27-39% of all capillaries in two subjects, indicating a significant reduction of perfusion from normal (2p=0.045). In identical experimental preparations, single polymorphonuclear leukocytes completely occluded 4.7% of microvessels of capillary diameter in randomly selected fields, partially occluded 33% of postcapillary venules, and occluded 40% (four of 10) of capillaries in linear reconstruction along a 110 /*m length. Circumferential contact between polymorphonuclear leukocytes and the luminal endothelial cell membranes was documented, with an intercellular gap of, at most, 160 nm. Fibrin was found with degranulated platelets when the latter were associated with granulocytes, but not with polymorphonuclear leukocytes alone.Conclusions: The rinding of capillary-obstructing polymorphonuclear leukocytes in the microvascular bed following middle cerebral artery reperfusion in focal ischemia in this model satisfies an essential requirement for postulating their role in early microvascular injury and the "no-reflow" phenomenon. {Stroke 1991 ;22:1276-1283)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.