MafB is a member of the large Maf family of transcription factors that share similar basic region/leucine zipper DNA binding motifs and N-terminal activation domains. Although it is well known that MafB is specifically expressed in glomerular epithelial cells (podocytes) and macrophages, characterization of the null mutant phenotype in these tissues has not been previously reported. To investigate suspected MafB functions in the kidney and in macrophages, we generated mafB/green fluorescent protein (GFP) knock-in null mutant mice. mafB homozygous mutants displayed renal dysgenesis with abnormal podocyte differentiation as well as tubular apoptosis. Interestingly, these kidney phenotypes were associated with diminished expression of several kidney disease-related genes. In hematopoietic cells, GFP fluorescence was observed in both Mac-1-and F4/80-expressing macrophages in the fetal liver. Interestingly, F4/80 expression in macrophages was suppressed in the homozygous mutant, although development of the Mac-1-positive macrophage population was unaffected. In primary cultures of fetal liver hematopoietic cells, MafB deficiency was found to dramatically suppress F4/80 expression in nonadherent macrophages, whereas the Mac-1-positive macrophage population developed normally. These results demonstrate that MafB is essential for podocyte differentiation, renal tubule survival, and F4/80 maturation in a distinct subpopulation of nonadherent mature macrophages.
Particulates such as silica crystal (silica) and aluminum salts (alum) activate the inflammasome and induce the secretion of proinflammatory cytokines in macrophages. These particulates also induce the production of immunoglobulin E via a T helper 2 (Th2) cell-associated mechanism. However, the mechanism involved in the induction of type 2 immunity has not been elucidated. Here, we showed that silica and alum induced lipopolysaccharide-primed macrophages to produce the lipid mediator prostaglandin E₂ (PGE₂) and interleukin-1β (IL-1β). Macrophages deficient in the inflammasome components caspase 1, NALP3, and ASC revealed that PGE₂ production was independent of the NALP3 inflammasome. PGE₂ expression was markedly reduced in PGE synthase-deficient (Ptges⁻/⁻) macrophages, and Ptges⁻/⁻ mice displayed reduced antigen-specific serum IgE concentrations after immunization with alum or silica. Our results indicate that silica and alum regulate the production of PGE₂ and that the induction of PGE₂ by particulates controls the immune response in vivo.
Particulate pollution is thought to function as an adjuvant that can induce allergic responses. However, the exact cell types and immunological factors that initiate the lung-specific immune responses are unclear. We found that upon intratracheal instillation, particulates such as aluminum salts and silica killed alveolar macrophages (AMs), which then released interleukin-1α (IL-1α) and caused inducible bronchus-associated lymphoid tissue (iBALT) formation in the lung. IL-1α release continued for up to 2 weeks after particulate exposure, and type-2 allergic immune responses were induced by the inhalation of antigen during IL-1α release and iBALT formation, even long after particulate instillation. Recombinant IL-1α was sufficient to induce iBALTs, which coincided with subsequent immunoglobulin E responses, and IL-1-receptor-deficient mice failed to induce iBALT formation. Therefore, the AM-IL-1α-iBALT axis might be a therapeutic target for particulate-induced allergic inflammation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.